Skip to main content

Mediterranean Rhodolith Beds

  • Chapter
  • First Online:

Part of the book series: Coastal Research Library ((COASTALRL,volume 15))

Abstract

The available references to rhodolith beds have been analyzed for a total of 125 locations in the Mediterranean Sea, equally distributed in the eastern and western sub-basins. Mediterranean rhodolith beds occur from 9 to 150 m of water depth, with a mean depth of about 55 m in both sub-basins. Most rhodolith beds lay within the depth range 30–75 m, while those extending deeper than 75 m are about 18 % of the total, and those shallower than about 25 m are uncommon. The deepest and the largest Mediterranean rhodolith beds are both located in the Balearic Sea. Water motion from bottom currents, waves, and tides is needed to keep rhodoliths unburied, within mesotrophic to oligotrophic water conditions. Rhodolith beds are commonly small (<0.01 km2) and multispecific, showing growth-form mixing and a much higher coralline biodiversity than Atlantic beds. They are vulnerable to physical disturbance by fishing gears and smothering, and to water pollution by organic enrichment and sewage. The existing instruments of legal protection appear ill defined, since these are based on scientific literature mostly derived from northern Europe, where specific and different environmental settings, species composition, depth distribution, and anthropogenic pressures occur. The protection of a specific habitat type cannot be effectively gained without access to geospatial and compositional data and an increased research effort is needed to improve taxonomic inventories, habitat mapping, and monitoring activities on a basin scale.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adey WH, Steneck RS (2001) Thermogeography over time creates biogeographic regions: a temperature/space/time-integrated model and an abundance-weighted test for benthic marine algae. J Phycol 37:677–698

    Article  Google Scholar 

  • Agnesi S, Annunziatellis A, Cassese ML, Di Nora T, La Mesa G, Mo G, Pergent-Martini C, Tunesi L (2009) Analysis on the coralligenous assemblages in the Mediterranean sea: a review of the current state of knowledge in support of future investigations. In: Pergent-Martini C, Brichet M (eds) UNEP – MAP – RAC/SPA Proc of the 1st Mediterranean symposium on the conservation of the coralligenous and other calcareous bio-concretions, Tabarka, Tunisia, 15–16 January 2009, pp 41–46

    Google Scholar 

  • Agnesi S, Babbini L, Bressan G, Cassese ML, Mo G, Tunesi L (2011) Distribution of maërl facies and rhodolith associations in the Italian seas: current state of knowledge. Biol Mar Mediterr 18(1):50–51

    Google Scholar 

  • Aguado-Giménez F, Ruiz-Fernández JM (2012) Influence of an experimental fish farm on the spatio-temporal dynamic of a Mediterranean maërl algae community. Mar Environ Res 74:47–55

    Article  Google Scholar 

  • Aguilar R, Pastor X, Torriente A, Garcia S (2009) Deep-sea coralligenous beds observed with ROV on four seamounts in the western Mediterranean. In: Pergent-Martini C, Brichet M (eds), UNEP – MAP – RAC/SPA Proc of the 1st Mediterranean symp on the conservation of the coralligenous and other calcareous bio-concretions, Tabarka, Tunisia, 15–16 January 2009, pp 148–150

    Google Scholar 

  • Aktan Y (2012) On the occurrence of Coralligenous algae in the Johnston Bank (Aegean Sea). J Black Sea/Mediterr Environ 18(3):414–419

    Google Scholar 

  • Astruch P, Boudouresque CF, Bonhomme D, Goujard A, Antonioli PA, Bonhomme P, Perez T, Ruitton S, De Saint-Martin T, Verlaque M (2012) Mapping and state of conservation of benthic marine habitats and assemblages of Port-Cros national Park (Provence, France, northwestern Mediterranean Sea). Sci Rep Port-Cros Natl Park 26:45–90

    Google Scholar 

  • Atabey N (1998) Facies characteristics and geographic distribution of rhodoliths and maerls (red algae) in Southern shelf of the Sea of Marmara. Miner Res Expl Bull 120:55–61

    Google Scholar 

  • Babbini L, Bressan G, Massa-Gallucci A, Buia MC, Gambi MC (2006) Segnalazione di una facies a maërl (Corallinales) lungo le coste dell’isola di Ischia. Biol Mar Mediterr 13(1):548–552

    Google Scholar 

  • Bahia RG, Abrantes DP, Brasileiro PS, Pereira Filho GH, Amado Filho GM (2010) Rhodolith bed structure along a depth gradient on the northern coast of Bahia State, Brazil Braz. J Oceanogr 58(4):323–337

    Google Scholar 

  • Bakir K, Katağan T (2005) Crustacean diversity of the coralligenous beds of Markiz Island (Aegean coast of Turkey). Crustaceana 78(7):873–883

    Article  Google Scholar 

  • Ballesteros E (1989) Composición y estructura de los fondos de maërl de Tossa de Mar (Gerona, España). Collectaea Bot 17(2):161–182

    Article  Google Scholar 

  • Ballesteros E (2006) Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr Mar Biol Ann Rev 44:123–195

    Article  Google Scholar 

  • Ballesteros E, Zabala M, Uriz MJ, García-Rubiés A, Turón X (1993) El bentos: Les comunitats. En: Història natural de l’arxipèlag de Cabrera. J.A. Alcover, E. Balleteros, J.J. Fornós (eds). Monogr Soc Hist Nat Balears 2:687–730

    Google Scholar 

  • Barbera C, Bordehore C, Borg JA, Glémarec M, Grall J, Hall-Spencer JM, De La Hoz CH, Lanfranco E, Lastra M, Moore PG, Mora J, Pita ME, Ramos-Espla AA, Rizzo M, Sanchez-Mata A, Seva A, Schembri PJ, Valle C (2003) Conservation and management of northeast Atlantic and Mediterranean maërl beds. Aquat Conserv Mar Freshw Ecosyst 13:S65–S76

    Article  Google Scholar 

  • Barberá C, Moranta J, Ordines F, Ramón M, de Mesa A, Diaz-Valdés M, Grau AM, Massutí E (2012) Biodiversity and habitat mapping of Menorca Channel (Western Mediterranean): implications for conservation. Biodivers Conserv 21:701–728. doi:10.1007/s10531-011-0210-1

    Article  Google Scholar 

  • Barnes J, Bellamy DJ, Jones DJ, Whitton BA, Drew E, Lythgoe J (1970) Sublittoral reef phenomena of Aldabra. Nature 225:268–269

    Article  Google Scholar 

  • Basso D (1998) Deep rhodolith distribution in the Pontian Islands, Italy: a model for the paleoecology of a temperate sea. Palaeogeogr Palaeocl 137:173–187

    Article  Google Scholar 

  • Basso D (2012) Carbonate production by calcareous red algae and global change. In: Basso D, Granier B (eds) Calcareous algae and global change: from identification to quantification. Geodiversitas 34:13–33

    Google Scholar 

  • Basso D, Fravega P, Vannucci G (1996) Fossil and living corallinaceans related to the Mediterranean endemic species Lithophyllum racemus (Lamarck) Foslie. Facies 35:275–292

    Article  Google Scholar 

  • Basso D, Fravega P, Vannucci G (1997) The taxonomy of Lithothamnion ramosissimum Gümbel (non Reuss) Conti and Lithothamnion operculatum Conti (Rhodophyta, Corallinaceae). Facies 37:167–182

    Article  Google Scholar 

  • Basso D, Nalin R, Massari F (2007) Genesis and composition of the Pleistocene Coralligène de plateau of the Cutro Terrace (Calabria, southern Italy). N Jb Geol Paläont (Abh) 244/2:173–182

    Article  Google Scholar 

  • Basso D, Bernasconi MP, Robba E, Marozzo S (2008) Environmental evolution of the Marsala sound, Sicily, during the last 6000 years. J Coast Res 24(1):177–197

    Article  Google Scholar 

  • Basso D, Nalin R, Nelson CS (2009) Shallow-water Sporolithon rhodoliths from North Island (New Zealand). Palaios 24(2):92–103. doi:10.2110/palo.2008.p08-048r

    Article  Google Scholar 

  • Basso D, Rodondi G, Caragnano A (2014) Coralline species composition of Tyrrhenian maerl beds (Western Mediterranean). In: Bouafif C, Langar H, Ouerghi A (eds) UNEP/MAP – RAC/SPA Proceedings of the 2nd Mediterranean symp on the conservation of Coralligenous and other calcareous bio-concretions. Portorož, Slovenia, 29–30 October 2014, pp 197–198

    Google Scholar 

  • Basso D, Babbini L, Kaleb S, Bracchi VA, Falace A (2015) Monitoring deep Mediterranean rhodolith beds. Aquat Conserv: Mar Freshw Ecosyst. Wiley Online Library doi:10.1002/aqc.2586

  • BIOMaErl Team (1998) Maerl grounds: habitats of high biodiversity in European waters. In: Barthel KG, Barth H, Bohle-Carbonell M, Fragakis C, Lipiatou E, Martin P, Ollier G, Weydert M (eds) Third European marine science and technology conference, (Lisbon, Portugal, 23–27 May 1998), vol 1, Marine systems. European Commission, Brussels, pp 170–178

    Google Scholar 

  • BIOMaErl Team (2003) Conservation and management of northeast Atlantic and Mediterranean maerl beds. Aquat Conserv 13:S65–S76

    Google Scholar 

  • Bonacorsi M (2012) Caractérisation des peuplements benthiques du Cap Corse (Méditerranée, France). Thèse Ecologie marine, Universite’ de Corse, 159 pp

    Google Scholar 

  • Bordehore C, Riosmena-Rodriguez R, Ramos-Esplá AA (2002a) Maerl-forming species in Alicante province (SE Spain): a taxonomic analysis. In: Proceedings of the 1st Mediterranean symposium on marine vegetation, Ajaccio, 3–4 October 2000. Mednature 1:101–104. RAC/SPA Tunis, Tunisia

    Google Scholar 

  • Bordehore C, Borg JA, Lanfranco E, Ramos-Esplá AA, Rizzo M, Schembri PJ (2002b) Trawling as a major threat to Mediterranean maerl beds. Proc of the First Mediterranean Symposium on Marine Vegetation, Ajaccio, 3–4 October 2000. Mednature 1:105–109. RAC/SPA Tunis, Tunisia

    Google Scholar 

  • Bordehore C, Ramos-Esplá AA, Riosmena-Rodriguez R (2003) Comparative study of two maerl beds with different otter trawling history, southeast Iberian Peninsula. Aquat Conserv 13:S43–S54

    Article  Google Scholar 

  • Bosellini A, Ginsburg RN (1971) Form and internal structure of Recent algal nodules (rhodolites) from Bermuda. J Geol 79:669–682

    Article  Google Scholar 

  • Bracchi VA and Basso D (2012) The contribution of calcareous algae to the biogenic carbonates of the continental shelf: Pontian Islands, Tyrrhenian Sea, Italy. In: Basso D, Granier B (eds) Calcareous algae and global change: from identification to quantification. Geodiversitas 34:61–76

    Google Scholar 

  • Canals M, Ballesteros E (1997) Production of carbonate particles by phytobenthic communities on the Mallorca-Menorca shelf, northwestern Mediterranean Sea. Deep Sea Res II 44(3–4):611–629

    Article  Google Scholar 

  • Castriota L, Gambi MC, Zupo V, Sunseri G (2003) Structure and trophic ecology of a population of Lysidice ninetta (Polychaeta) associated to rhodoliths off the island of Ustica (Southern Tyrrhenian Sea). Biol Mar Mediterr 10(2):517–520

    Google Scholar 

  • Castriota L, Agamennone F, Sunseri G (2005) The molluscan commuity associated with maërl beds of Ustica Island (Tyrrhenian Sea). Cah Biol Mar 46:289–297

    Google Scholar 

  • Cecere E, Perrone C (1987) First contribution to the knowledge of macrobenthic flora of the Amendolara sea-mount (Ionian Sea). Oebalia 14:1–14

    Google Scholar 

  • Covazzi Harriague A, Schiaparelli S, Panciroli H, Albertelli G (2002) Soft bottom mollusc communities of four south Tyrrhenian archipelagos and Ustica island (NW Mediterranean). P Italian Assoc Oceanol Limnol 15:63–74

    Google Scholar 

  • Damiani V, Bianchi CN, Ferretti O, Bedulli D, Morri C, Viel M, Zurlini G (1988) Risultati di una ricerca ecologica sul sistema marino costiero pugliese. Thalass Salentina 18:153–169

    Google Scholar 

  • El Lakhrach H, Hattour A, Jarboui O, Elhasni K, Ramos-Espla AA (2012) Spatial distribution and abundance of the megabenthic fauna community in Gabes gulf (Tunisia, eastern Mediterranean Sea). Mediterr Mar Sci 13(1):12–29

    Article  Google Scholar 

  • Falace A, Bressan G (2003) Changes of algal flora in the Gulf of Trieste (Northern Adriatic Sea). Bocconea 16:1033–1037

    Google Scholar 

  • Falace A, Kaleb S, Agnesi S, Annunziatellis A, Salviati E, Tunesi L (2014) Macroalgal composition of rhodolith beds in a pilot area of the Tuscan Archipelago (Tyrrhenian Sea): primary elements to evaluate the degree of conservation of this habitat. In: Bouafif C, Langar H, Ouerghi A (eds), UNEP/MAP – RAC/SPA Proceedings of the 2nd Mediterranean symposium on the conservation of Coralligenous and other calcareous bio-concretions, Portorož, Slovenia, 29–30 October 2014, pp 213–214

    Google Scholar 

  • Funk G (1927) Die algenvegetation des Golfs von Neapel. Pubbl. della Staz Zool di Napoli 7

    Google Scholar 

  • Gambi MC, Buia MC, Massa-Gallucci A, Cigliano M, Lattanzi L, Patti FP (2009) The “pink mile”: benthic assemblages of rhodolith and maërl beds (Corallinales) off the Island of Ischia (Thyrrhenian Sea). In: Pergent-Martini C, Brichet M (eds), UNEP – MAP – RAC/SPA Proceedings of the 1st Mediterranean symposium on the conservation of the coralligenous and other calcareous bio-concretions, Tabarka, Tunisia, 15–16 January 2009, pp 198–200

    Google Scholar 

  • García-Carrascosa AM (1987) El bentos de los alrededores de las islas Columbretes. Elementos para su cartografía bionómica. En: Islas Columbretes. Contribución al estudio de su medio natural. LA Alonso Matilla, JL Carretero & AM García-Carrascosa (coord.). COPUT, Generalitat Valenciana, pp 363–390

    Google Scholar 

  • García-March JR, Kersting DK (2006) Preliminary data on the distribution and density of Pinna nobilis and Pinna rudis in the Columbretes Islands Marine Reserve (Western Mediterranean, Spain). Poster presented at the International Congress on Bivalvia. Universitat Autònoma de Barcelona, Bellaterra, Catalunya, Spain, 22–27 July 2006

    Google Scholar 

  • Georgiadis M, Papatheodorou G, Tzanatos E, Geraga M, Ramfos A, Koutsikopoulos C et al (2009) Coralligène formations in the eastern Mediterranean Sea: morphology, distribution, mapping and relation to fisheries in the southern Aegean Sea (Greece) based on high-resolution acoustics. J Exp Mar Biol Ecol 368:44–58

    Article  Google Scholar 

  • Giménez-Casalduero F, Rodriguez-Ruiz S, Vivas M, Ramos-Esplá AA (2001) Variaciones de las características estructurales de la comunidad de poliquetos asociada a dos fondos de maërl del litoral alicantino (sudeste de la península Ibérica). Bol Inst Esp Oceanog 17(1–2):191–201

    Google Scholar 

  • Ginsburg RN, Bosellini A (1973) Form and internal structure of recent algal nodules (Rhodolites) from Bermuda: a reply. J Geol 81:239–241

    Article  Google Scholar 

  • Glémarec M (1997) La complexité architecturale des fonds de maérl en tant que source de biodiversité. In: Dauvin JE (ed) Les biocénoses marines et littorales françaises des côtes atlantique, Manche et Mer du Nord. Synthèse, menaces et perspectives. Muséum Nat Hist Nat:147–149

    Google Scholar 

  • Grall J, Glémarec M (1997) Biodiversité des fonds de maërl en Bretagne: approche fonctionelle et impacts anthropiques. Vie Milieu 47(4):339–349

    Google Scholar 

  • Grall J, Hall-Spencer JM (2003) Problems facing maërl conservation in Brittany. Aquat Conserv 13:55–64

    Article  Google Scholar 

  • Hall-Spencer JM (1998) Conservation issues relating to maërl beds as habitats for molluscs. J Conchol Spec Publ 2:271–286

    Google Scholar 

  • Huertas IE, Ríos AF, García-Lafuente J, Navarro G, Makaoui A, Sánchez-Román A, Rodriguez-Galvez S, Orbi A, Ruíz J, Pérez FF (2012) Atlantic forcing of the Mediterranean oligotrophy. Global Biogeochem Cy 26:GB2022. doi:10.1029/2011GB004167

    Article  Google Scholar 

  • Huvé H (1955) Contribution à l’étude des fonds à Lithothamnium (?) solutum de la région de Marseille. Recl Trav St Mar Endoume 18:105–133

    Google Scholar 

  • Jacquotte R (1962) Etude des fonds de maerl de Méditérranée. Recl Trav St Mar Endoume 26:141–235

    Google Scholar 

  • Keegan BE (1974) The macrofauna of maërl substrates on the best coast of Ireland. Cah Biol Mar 15:513–530

    Google Scholar 

  • Laborel J (1961) Le concrétionnement algal “coralligène” et son importance geomorphologique en Méditerranée. Recl Trav St Mar Endoume 23:37–60

    Google Scholar 

  • Lanfranco E, Rizzo M, Hall-Spencer J, Borg JA, Schembri PJ (1999) Maerl-forming coralline algae and associated phytobenthos from the Maltese Islands. Cent Mediterr Nat 3(1):1–6

    Google Scholar 

  • Lemoine M M.me. P. (1940) Les algues calcaires de la Zone Néritique. Mem Soc Biogéogr 7:75–138

    Google Scholar 

  • Lozano CJ, Candela J (1995) The M2 tide in the Mediterranean Sea: dynamic analysis and data assimilation. Oceanol Acta 18(4):419–441

    Google Scholar 

  • Mannino AM, Castriota L, Beltrano AM, Sunseri G (2002) The epiflora of a rhodolith bed from the island of Ustica (Southern Tyrrhenian Sea). Flora Mediterr 12:11–28

    Google Scholar 

  • Marion AF (1883) Esquisse d’une topographie zoologique du golfe de Marseille. Ann Mus Hist Nat Marseille 1:1–108

    Google Scholar 

  • Marrack E (1999) The relationship between water motion and living rhodolith beds in the southWestern Gulf of California, Mexico. Palaios 14:159–171

    Article  Google Scholar 

  • Martin Sintes D (1987) La comunidad de Anélidos Poliquetos de las concreciones de algas calcáreas del litoral catalán. Caracterización de las especies. P Dept Zool Barcelona 13:45–54

    Google Scholar 

  • Martin S, Gattuso JP (2009) Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Global Change Biol 15:2089–2100. doi:10.1111/j.1365-2486.2009.01874.x

    Article  Google Scholar 

  • Martin CS, Giannoulaki M, De Leo F, Scardi M, Salomidi M, Knitweiss L, Pace ML, Garofalo G, Gristina M, Ballesteros E, Bavestrello G, Belluscio A, Cebrian E, Gerakaris V, Pergent G, Pergent-Martini C, Schembri PJ, Terribile K, Rizzo L, Ben Souissi J, Bonacorsi M, Guarnieri G, Krzelj M, Macic V, Punzo E, Valavanis V, Fraschetti S (2014) Coralligenous and maërl habitats: predictive modelling to identify their spatial distributions across the Mediterranean Sea. Sci Rep 4:5073. doi:10.1038/srep05073

    Article  Google Scholar 

  • Meinesz A, Boudouresque CF, Falconetti C, Astier JM, Blanc JJ, Bourcier M, Cinelli F, Cirik S, Cristiani G, Di Geronimo I, Giaccone G, Harmelin JG, Laubier L, Lovric AZ, Molinier R, Soyer J, Vamvakas C (1983) Normalisation des symboles pour la représentation et la cartographie des biocénoses benthiques littorales de Méditerranée. Ann Inst Océanogr NS 59:155–172

    Google Scholar 

  • Micallef A, Le Bas TP, Huvenne VAI, Blondel P, Huhnerbach V, Deidun A (2012) A multi-method approach for benthic habitat mapping of shallow coastal areas with high-resolution multibeam data. Cont Shelf Res 39–40:14–26. http://dx.doi.org/10.1016/j.csr.2012.03.008

    Article  Google Scholar 

  • Müller GJ (1985) The pre-coralligen community in the Marmara Sea. Rapp Comm Int Mer Medit 29:327–328

    Google Scholar 

  • Nicoletti L, Paganelli D, Gabellini M (2006) Aspetti ambientali del dragaggio di sabbie relitte a fini di ripascimento: proposta di un protocollo di monitoraggio. Quaderno ICRAM 5:159 pp

    Google Scholar 

  • Ordines F, Massutí E (2009) Relationships between macro-epibenthic communities and fish on the shelf grounds of the western Mediterranean. Aquat Conserv 19(4):370–383

    Article  Google Scholar 

  • Papakosta F, Hasiotis T, Paleokrassas A (2012) Biogenic formations in the Sikinos-Folegandros area. In: Proceedings of the 10th Hellenic symposium on oceanography and fisheries, 7–11 May, Athens, 41 p (in Greek)

    Google Scholar 

  • Pardo C, Lopez L, Peña V, Hernández-Kantún J, Le Gall L et al (2014) A Multilocus species delimitation reveals a striking number of species of coralline algae forming maerl in the OSPAR Maritime Area. PLoS ONE 9(8):e104073. doi:10.1371/journal.pone.0104073

    Article  Google Scholar 

  • Parenzan P (1960) Aspetti biocenotici dei fondi ad alghe litoproduttrici del Mediterraneo. Rapp Comm Int Mer Méditerr 15:87–107

    Google Scholar 

  • Pérès JM (1952) Notes sur les fonds de gravelle dans la région de Marseille comparés à ceux des côtes d’Algérie. Vie Milieu Suppl 2:208–215

    Google Scholar 

  • Pérès JM, Picard J (1956) Recherches sur les peuplements benthiques de la Méditerranée Nord-Orientale. Résultats scientifiques des campagnes de la Calypso, Fascicule III, 214–291. Masson et Cie ed Paris

    Google Scholar 

  • Pérès JM, Picard J (1964) Nouveau manuel de bionomie benthique de la Mer Méditérranée. Recl Trav St Mar Endoume 47:1–137

    Google Scholar 

  • Piazzi L, Pardi G, Cinelli F (2002) Structure and temporal dynamics of a macroalgal assemblage associated with a rhodolith bed of the Tuscan archipelago (Tyrrhenian sea). Atti Soc Tosc Sci Nat Mem Ser B 109:5–10

    Google Scholar 

  • Picard J (1965) Recherches qualitatives sur les biocoenoses marines des substrats meubles dragables de la région marseillaise. Recl Trav St Mar Endoume 36(52):1–160

    Google Scholar 

  • Pignatti S, Rizzi L (1972) Raccolte di alghe bentoniche nelle acque dell’Arcipelago Toscano. Atti Ist Veneto Sci Lett ed Arti Cl Sci Mat e Nat 130:313–327

    Google Scholar 

  • Pinardi N, Masetti E (2000) Variability of the large scale general circulation of the Mediterranean Sea from observations and modelling: a review. Palaeogeogr Palaeocl 158:153–173

    Article  Google Scholar 

  • Ramos-Esplá AA, Ben Mustapha K (2010) Etude des habitats marins et des principales spèces des îles Kuriat (Tunisie, 2008). Rapport de la mission. Contrat n° 16/CAR-ASP/2008, 91 pp

    Google Scholar 

  • Ramos-Esplá AA, Luque AA (2004) Los fondos de “maerl”. In: Luque AA, Templado J (Coords) Pradera y bosques marinos de Andalucía. Consejería de Medio Ambiente, Junta de Andalucía, Sevilla:221–236

    Google Scholar 

  • Ramos-Esplá AA, Luque AA (2008) The seas of Spain. Maerl beds: a fragile oasis of marine life. Ministero del Medio Ambiente y medio rural y marino, pp 273–290

    Google Scholar 

  • Ramos-Esplá AA, Riosmena-Rodriguez R, Galil B (2012) Contribution to the knowledge of maérl beds in the Levantine Basin. Eastern Mediterranean. IV International Rhodolith Workshop, Granada (Spain):63

    Google Scholar 

  • Relini G, Giaccone G (2009) Gli Habitat prioritari del Protocollo SPA/BIO (Convenzione di Barcellona) presenti in Italia. Schede descrittive per l’identificazione. Biol Mar Mediterr 16(suppl1):1–266

    Google Scholar 

  • Riul P, Targino CE, da Nobrega Farias J, Visscher PT, Horta PA (2008) Decrease in Lithothamnion sp. (Rhodophyta) primary production due to the deposition of a thin sediment layer. J Mar Biol Assoc UK 88(1):17–19

    Article  Google Scholar 

  • Salomidi M, Smith C, Katsanevakis S, Panayotidis P, Papathanassiou V (2009) Some Observations on the structure and distribution of several Gorgonian Assemblages in the Eastern Mediterranean Sea. In: Pergent-Martini C, Brichet M (eds) UNEP – MAP – RAC/SPA Proc of the 1st Mediterranean symp on the conservation of the coralligenous and other calcareous bio-concretions, Tabarka, Tunisia, 15–16 January 2009, pp 242–245

    Google Scholar 

  • Salomidi M, Katsanevakis S, Borja A, Braeckman U, Damalas D, Galparsoro I, Mifsud R, Mirto S, Pascual M, Pipitone C, Rabaut M, Todorova V, Vassilopoulou V, Vega Fernandez T (2012) Assessment of goods and services, vulnerability, and conservation status of European seabed biotopes: a stepping stone towards ecosystem-based marine spatial management. Medit Mar Sci 13(1):49–88

    Article  Google Scholar 

  • Sanz-Lázaro C, Belando MD, Marín-Guirao L, Navarrete-Mier F, Marín A (2011) Relationship between sedimentation rates and benthic impact on Maërl beds derived from fish farming in the Mediterranean. Mar Environ Res 71(1):22–30

    Article  Google Scholar 

  • Savini A, Basso D, Bracchi VA, Corselli C, Pennetta M (2012) Maerl-bed mapping and carbonate quantification on submerged terraces offshore the Cilento peninsula (Tyrrhenian Sea, Italy). In: Basso D, Granier B (eds) Calcareous algae and global change: from identification to quantification. Geodiversitas 34:77–98

    Google Scholar 

  • Schembri PJ (1998) Maerl ecosystems of the Maltese Islands. In: Dandria D (ed) Biology abstracts MSc, PhD 1998 and contributions to marine biology. Department of Biology, University of Malta, Msida, pp 35–37, iv+38pp

    Google Scholar 

  • Sezgin M, Bakir K, Katağan T, Suat-Ateş A, Kirkim F (2009) Crustacean diversity of the coralligenous (maërl) beds of the Aegean sea coast of Turkey. In: Pergent-Martini C, Brichet M (Eds), UNEP – MAP – RAC/SPA Proc of the 1st Mediterranean symp on the conservation of the coralligenous and other calcareous bio-concretions, Tabarka, Tunisia, 15–16 January 2009, pp 253–255

    Google Scholar 

  • Soto J (1990) Vegetación algal sobre sustrato móvil de la zona circalitoral del sureste de la Península Ibérica: una aproximación. Folia Bot Misc 7:43–49

    Google Scholar 

  • Steller DL, Riosmena-Rodriguez R, Foster MS, Roberts CA (2003) Rhodolith bed diversity in the Gulf of California: the importance of rhodolith structure and consequences of disturbance. Aquat Conserv 13:S5–S20

    Article  Google Scholar 

  • Templado J, Calvo M, García-Carrascosa AM, Boisset F, Jiménez J (2002) Flora y fauna de la Reserva Marina de las Islas Columbretes. Secretaría Gral. Pesca Marítima. M° Agricultura, Pesca y Alimentación. Museo Nacional de Ciencias Naturales, CSIC, 263 pp

    Google Scholar 

  • Templado J, Calvo M, Moreno D, Flores A, Conde F, Abad R, Rubio J, López-Fé CM, Ortiz M (2006). Flora y fauna de la Reserva Marina y Reserva de Pesca de la Isla de Alborán. Secretaría Gral. Pesca Marítima. M° Agricultura, Pesca y Alimentación. Museo Nacional de Ciencias Naturales, CSIC. 269 pp

    Google Scholar 

  • Trapani F, Scotti G, Gianguzza P, Chemello R, Riggio S (1999) Struttura della malacofauna associata ai rodoliti dello Stagnone di Marsala (Sicilia occidentale). Biol Mar Mediterr 6(1):462–465

    Google Scholar 

  • Tsimplis MN, Proctor R, Flather RA (1995) A two-dimensional tidal model for the Mediterranean Sea. J Geophys Res 100(C8):16223–16239

    Article  Google Scholar 

  • Vatova A (1935) Ricerche preliminari sulle biocenosi del Golfo di Rovigno. Thalassia 2:1–30

    Google Scholar 

  • Walther J (1885) Le alghe calcarifere litoproduttrici del Golfo di Napoli e l’origine di certi calcarei compatti. Boll Regio Comitato Geol d’Italia 16:360–369

    Google Scholar 

  • Wilson S, Blake C, Berges JA, Maggs CA (2004) Environmental tolerances of freeliving coralline algae (maerl): implications for European marine conservation. Biol Conserv 120:279–289

    Article  Google Scholar 

Download references

Acknowledgments

Part of the geographic data compilation for the Aegean Sea was performed within the MAREA “Mediterranean Sensitive Habitats” (MEDISEH) project (service contract SI2.600741) aiming to map and model the distribution of priority habitats along the Mediterranean coasts. The European Research Network COCARDE and the EU project MedSeA in the background of this work have created favorable conditions for exchange of data and ideas to grow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Basso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Basso, D., Babbini, L., Ramos-Esplá, A.A., Salomidi, M. (2017). Mediterranean Rhodolith Beds. In: Riosmena-Rodríguez, R., Nelson, W., Aguirre, J. (eds) Rhodolith/Maërl Beds: A Global Perspective. Coastal Research Library, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-29315-8_11

Download citation

Publish with us

Policies and ethics