Skip to main content

Natural History of Rhodolith/Maërl Beds: Their Role in Near-Shore Biodiversity and Management

  • Chapter
  • First Online:

Part of the book series: Coastal Research Library ((COASTALRL,volume 15))

Abstract

Rhodolith/maërl beds are living and dead aggregations of free-living non-geniculate coralline algae that cover extensive benthic areas in recent oceans and are common in fossil deposits. They are slow growing organisms and can be long-lived (>100 years), distributed over a wide depth range from intertidal sites to 270 m. Rhodolith/maërl beds are a common feature of modern and ancient carbonate shelves worldwide that represent a sedimentary transition from sandy/muddy areas to the rocky substrate. They are bioengineers and provide a three-dimensional habitat for associated species. It has been demonstrated that rhodolith/maërl grounds are a suitable habitat for multispecies recruitment and provide refuge for juvenile life stages of commercially important shellfish species. Rhodoliths are resilient to a variety of environmental disturbances, but can be severely impacted by harvesting these commercial species, ocean acidification or global warming. The value of rhodoliths as a unique biotope around the world is under threat from different kinds of human activities. Despite the importance of rhodolith/maërl beds in the marine environment, a major limitation for protection is the lack of a clear definition of an ecosystem. A thorough review of the literature revealed a total of 12 vernacular/scientific terms that have been applied to free-living coralline red algae and these should be treated as synonyms. The Challenger Expedition (1872–1876) was one of the first voyages that promoted the understanding of the rich flora and fauna associated with coralline deposits. During the nineteenth century additional surveys in other areas of the world have confirmed the value of this ecosystem. During twentieth and twenty-first centuries many researchers have produced a vast scientific literature, documenting the importance of rhodolith/maërl, to understand their relevance regarding biodiversity in nearshore habitats. The relevance includes the description of new species or where the distribution of poorly known species has been extended, but more importantly the high number of associated species which includes species under protection, species ecologically relevant or species which are part of a formal fisheries. As a consequence of the concern about the state of the ecosystems in Europe at the end of the twentieth century, the EU developed a network of protected areas known as Natura 2000 sites. A series of publications on the conservation status of the maërl/rhodoliths in Atlantic and Mediterranean waters, Brittany, Gulf of California, and their relationship with fisheries, stated clearly that the health of rhodolith habitats in some areas of the world is decreasing, and there is an urgent need for management strategies. The combination of the interest in developing rhodolith/maërl conservation in other countries, the decline of the French Atlantic maërl deposits, and the correlation of rhodolith/maërl presence in or near oil deposits has motivated the exploration of rhodoliths in other areas such as Brazil, México, Australia and New Zealand. Understanding is increasing about the ecological role of rhodoliths in nearshore environments worldwide, the biodiversity associated with rhodoliths, and how human activities are having an increasing impact. The recognition of the importance of rhodolith beds as biodiversity centers has increased with the number of published papers and the growth in knowledge about the taxonomic status of the associated species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agegian C, Abbott I (1985) Deep water macroalgal communities: a comparison between Penguin Bank (Hawaii) and Johnston Atoll. In: Proceedings of the 5th international Coral Reef congress, 1985, pp 47–50

    Google Scholar 

  • Aguirre J, Braga JC, Bassi D (this volume) Rhodoliths and rhodolith beds in the rock record. In: Riosmena-Rodríguez R., Nelson W., Aguirre J. (eds) Rhodolith/maerl beds: a global perspective. Springer, Berlin

    Google Scholar 

  • Aguirre J, Peña V (2014) Advances in coralline algae research: insights from the IV International Rhodolith Workshop. Cryoptogamie Algol 35:3–5

    Article  Google Scholar 

  • Amado-Filho GM, Maneveldt G, Manso R, Marins-Rosa B, Pacheco M, Guimarães S (2007) Structure of rhodolith beds from 4 to 55 meters deep along the southern coast of Espírito Santo State, Brazil. Cienc Mar 33:399–410

    Google Scholar 

  • Amado-Filho G, Maneveldt G, Pereira-Filho G, Manso R, Bahia R, Barros-Barreto M, Guimarães S (2010) Seaweed diversity associated with a Brazilian tropical rhodolith bed. Cienc Mar 36(4):371–391

    Article  Google Scholar 

  • Amado-Filho GM, Moura RL, Bastos AC, Salgado LT, Sumida PYG et al (2012a) Rhodolith beds are major CaCO3 bio-factories in the Tropical South West Atlantic. PLoS ONE 7(4):e35171

    Article  Google Scholar 

  • Amado-Filho GM, Pereira-Filho GH, Bahia RG, Abrantes DP, Veras PC, Matheus Z (2012b) Occurrence and distribution of rhodolith beds on the Fernando de Noronha Archipelago of Brazil. Aquat Bot 101:41–45

    Article  Google Scholar 

  • Anon (1995) Biodiversity: the UK steering group report. HMSO, London, for Department of the Environment

    Google Scholar 

  • Atabey N (1998) Facies characteristics, geographic distribution of rhodoliths, maërl (red algae) in southern shelf of the Sea of Marmara. Miner Res Explor Bull 120:55–61

    Google Scholar 

  • Augier H, Boudouresque CF (1978) Vegetation marine de i’he de Port-Cros (Parc National). XVI: contribution a l’étude de l’épi fore du Déthtique Côtier. Tray Sci Parc Nation Port-Cros 4:101–125

    Google Scholar 

  • Bakalem A, Dauvin JC, Grimes S (2014) New marine amphipod records on the Algerian coast. J Mar Biol Assoc U K 94:753–762

    Article  Google Scholar 

  • Ballesteros E (1989) Composición y estructura de los fondos de maërl de Tosa de Mar (Gerona, España). Collect Bot 17:161–182

    Article  Google Scholar 

  • Barbera C, Bordehore C, Borg JA, Glémarec M, Grall J, Hall-Spencer JM, de la Huz C, Lanfranco E, Lastra M, Moore PG, Mora J, Pita ME, Ramos-Esplá AA, Rizzo M, Sánchez-Mata A, Seva A, Schembri PJ, Valle C (2003) Conservation and management of northeast Atlantic and Mediterranean maerl beds. Aquat Conserv Mar Freshw Ecosyst 13:S65–S76

    Article  Google Scholar 

  • Basso D (1992) Le rodoficee calcaree dei fondi mobil circalitorali del Mar Tirreno: le rodoliti attuali in una prospettiva paleoecologica. Ph. D., thesis University of Milano, 139 pp

    Google Scholar 

  • Basso D (1998) Deep rhodolith distribution in the Pontian Islands, Italy: a model for the paleoecology of a temperate sea. Palaeogeogr Palaeoclimatol Palaeoecol 137(1):173–187

    Article  Google Scholar 

  • Basso D, Brusoni F (2004) The molluscan assemblage of a transitional environment: the Mediterranean maërl from off the Elba Island (Tuscan Archipelago, Tyrrhenian Sea). Boll Mallacol 40:37–45

    Google Scholar 

  • Berlandi RM, Figueiredo MAO, Paiva PC (2012) Rhodolith morphology and the diversity of polychaetes off the southeastern Brazilian coast. J Coast Res 28:280–287

    Article  Google Scholar 

  • BIOMAËRL (1999) Final report, BIOMAËRL project (Coordinator: Moore PG, University Marine Biological Station Millport, Scotland), EC Contract No. MAS3-CT95-0020, 1: 1–541, 2: 542–973 pp +Appendix

    Google Scholar 

  • BIOMAËRL team (2003) Conservation and management of N.E Atlantic and Mediterranean maërl beds. Aquat Conserv Mar Freshw Ecosyst 13(S1):65–76

    Article  Google Scholar 

  • Birkett D, Maggs C, Dring MO (1998) Maerl, vol 5. An overview of dynamic and sensitivity characteristics for conservation management of SACs. Scottish Association for Marine Science

    Google Scholar 

  • Blunden G, Farnham W, Jephson N, Fenn R, Plunkett B (1977) The composition of maerl from the Glenan Islands of Southern Brittany. Bot Mar 20(2):121–126

    Article  Google Scholar 

  • Blunden G, Farnham W, Jephson N, Barwell C, Fenn R, Plunkett B (1980) Composition of maerl beds of economic interest in northern Brittany, Cornwall and Ireland. In: Proceedings-international seaweed symposium

    Google Scholar 

  • Blunden G, Campbell SA, Smith JR, Guiry MD, Hession CC, Griffin RL (1997) Chemical and physical characterization of calcified red algal deposits known as maërl. J Appl Phycol 9(1):11–17

    Article  Google Scholar 

  • Bordehore C, Ramos‐Esplá AA, Riosmena‐Rodríguez R (2003) Comparative study of two maerl beds with different otter trawling history, southeast Iberian Peninsula. Aquat Conserv Mar Freshw Ecosyst 13(S1):S43–S54

    Article  Google Scholar 

  • Bosence DWJ (1976) Ecological studies on two unattached coralline algae from western Ireland. Palaeontology 19:365–395

    Google Scholar 

  • Bosence DWJ (1979) Live and dead faunas from coralline algal gravels, Co. Galway. Palaeontology 22:449–478

    Google Scholar 

  • Bosence DWJ (1983a) Description and classification of rhodoliths (rhodoids, rhodolites). In: Peryt TM (ed) Coated grains. Springer, Berlin, pp 217–224

    Chapter  Google Scholar 

  • Bosence DWJ (1983b) The occurrence and ecology of recent rhodoliths – a review. In: Peryt TM (ed) Coated grains. Springer, Berlin, pp 225–242

    Chapter  Google Scholar 

  • Bosence DWJ, Wilson J (2003) Maerl growth, carbonate production rates and accumulation rates in the NE Atlantic. Aquat Conserv Mar Freshw Ecosyst 13(S1):S21–S31

    Article  Google Scholar 

  • Boudouresque C, Pergent G, Francour P, Harmelin-Vivien M, Jangoux M, Mazzella L, Panayotidis P, Pergent-Martini C, Ramos-Esplá AA, Romero J (1990) Le COST 647: posidonia project. Posidonia Newsl 3:27–34

    Google Scholar 

  • Bressan G, Babbini L (2003) Biodiversita marina delle coste italiane: Corallinales del mar mediterraneo: guida alla determinazione. Soc Italina Biol Mar 10(2):1–237

    Google Scholar 

  • Brice M, Poliseno A (2014) Two new records of octocorals (Anthozoa, Octocorallia) from north-west Australia. Rec West Aust Mus 29:159–168

    Article  Google Scholar 

  • Bridge TCL, Done TJ, Beaman RJ, Friedman A, Williams SB, Pizarro O, Webster JM (2011) Topography, substratum and benthic macrofaunal relationships on a tropical mesophotic shelf margin, central Great Barrier Reef, Australia. Coral Reefs 30(1):143–153

    Article  Google Scholar 

  • Cabioch J (1969) Les fonds de maerl de la baie de Morlaix et leur peuplement végétal. Cahiers de Biologie Marine

    Google Scholar 

  • Calcavanti GS, Gregoracci GB, dos Santos EO, Silveira CB, Meirelles PM, Longo L, Gotoh K, Nakamura S, Iida T, Sawabe T, Rezende CE, Francini-Filho RB, Moura RL, Amado-Filho GM, Thompson FL (2014) Physiologic and metagenomic attributes of the rhodoliths forming the largest CaCO3 bed in the South Atlantic Ocean. ISME J 8:52–62

    Article  Google Scholar 

  • Calcinai B, Moratti V, Martinelli M, Bavestrello G, Taviani M (2013) Uncommon sponges associated with deep coral bank and maerl habitats in the Strait of Sicily (Mediterranean Sea). Ital J Zool 80(3):412–423

    Article  Google Scholar 

  • Carvalho S, Cunha MR, Pereira F, Pousão-Ferreira P, Santos MN, Gaspar MB (2012) The effect of depth and sediment type on the spatial distribution of shallow soft-bottom amphipods along the southern Portuguese coast. Helgol Mar Res 66:489–501

    Article  Google Scholar 

  • Castriota L, Agamennone F, Sunseri G (2005) The mollusc community associated with maerl beds of Ustica Island (Tyrrhenian Sea). Cah Biol Mar 46(3):289

    Google Scholar 

  • Cho TO, Riosmena-Rodriguez R (2008) Ceramium periconicum sp. nov. (Ceramiaceae, Rhodophyta): a new subtidal species from Baja California Sur, México. Bot Mar 51:307–312

    Article  Google Scholar 

  • Cho TO, Riosmena-Rodríguez R, Boo SM (2003) Fist record of Ceramium giacconei (Ceramiaceae, Rhdophyta) in the North Pacific: developmental morphology of vegetative and reproductive structures. Bot Mar 46:548–554

    Google Scholar 

  • Clark RN (2000) The chiton fauna of the Gulf of California rhodolith beds (with the descriptions of four new species). Nemouria: Occasional Papers of the Delaware Museum of Natural History 43:1–18

    Google Scholar 

  • Collins LB (1988) Sediments and history of the Rottnest Shelf, southwest Australia: a swell dominated, non-tropical carbonate margin. Sediment Geol 60:15–49

    Article  Google Scholar 

  • Conservation Do (1998) Kapiti marine reserve: conservation management plan Wellington conservancy paper presented at the conservation management planning series

    Google Scholar 

  • Costello MJ (2000) A framework for an action plan on marine biodiversity in Ireland. Marine Institute, Ireland, 47 pp

    Google Scholar 

  • Crouan PL, Crouan HM (1867) Florule du Finistère. Contenant les descriptions de 360 espèces nouvelles de sporogames, de nombreuses observations, et une synonomie des plantes cellulaires et vasculaires qui croissent spontanément dans ce département, etc. pp. [i]-x, [1]-262, frontisp., pi. 1–31, + 1 suppl. pl. Paris & Brest: Friedrich Klincksieck & J.B. et A. Lefournier

    Google Scholar 

  • Dauvin JC (1997) Les biocénoses marines et littorales françaises des côtes atlantique, manche et mer du nord Synthèse, menaces et perspectives. Muséum National d’Hiostoire Naturelle

    Google Scholar 

  • Dawson EY (1944) The marine algae of the Gulf of California. Allan Hancock pacific expeditions, 3:1–454

    Google Scholar 

  • Dawson E (1960) Marine red algae of Pacific Mexico. Part 3. Cryptonemiales, Corallinaceae subfam. Melobesioideae. Pac Nat 3:3–125

    Google Scholar 

  • De Grave S (1999) The influence of sedimentary heterogeneity on within maerl bed differences in infaunal crustacean community. Estuar Coast Shelf Sci 49(1):153–163

    Article  Google Scholar 

  • De Grave S, Whitaker A (1999) A census of maërl beds in Irish waters. Aquat Conserv Mar Freshw Ecosyst 9(3):303–311

    Article  Google Scholar 

  • De Grave S, Fazakerley H, Kelly L, Guiry M, Ryan M, Walshe J (2000) A study of selected maërl beds in Irish waters and their potential for sustainable extraction. Mar Resour Ser Mar Inst Dublin 10:1–44

    Google Scholar 

  • Dewas S, O’Shea S (2012) The influence of Tucetona laticostata (Bivalvia: Glycymeridae) shells and rhodolith patches on benthic-invertebrate assemblages in Hauraki Gulf, New Zealand. N Z J Mar Freshw Res 46(1):47–56

    Article  Google Scholar 

  • Donze M (1968) The algal vegetation of the Ría de Arosa (NW. Spain). Blumea-Biodivers Evol Biogeogr Plants 16(1):159–192

    Google Scholar 

  • Dos Santos AS, Riul P, Dos Santos Brasil AC, Christoffersen ML (2011) Encrusting Sabellariidae (Annelida: Polychaeta) in rhodolith beds, with description of a new species of Sabellaria from the Brazilian coast. J Mar Biol Assoc U K 91(02):425–438

    Article  Google Scholar 

  • Falconeti C (1970) Etude faunistique d’un faciès: “la Gravelette” ou maërl de Castiglione (Algérie). Tethys 1(4):1057–1096

    Google Scholar 

  • Figueiredo MAO, Coutinho R, Villas-Boas AB, Tâmega FTS, Mariath R (2012) Deep-water rhodolith productivity and growth in the southwestern Atlantic. J Appl Phycol 24:487–493

    Article  Google Scholar 

  • Figueiredo MAO, Eide I, Reynier M, Villas-Bôas AB, Tâmega FTS, Ferreira CG, Nilssen I, Coutinho R, Johnsen S (2015) The effect of sediment mimicking drill cuttings on deep water rhodoliths in a flow-through system: experimental work and modeling. Mar Pollut Bull 95:81–88

    Article  Google Scholar 

  • Foster MS (2001) Rhodoliths: between rocks and soft places. J Phycol 37(5):659–667

    Article  Google Scholar 

  • Foster MS, Riosmena-Rodríguez R, Steller DL, Woelkerling WJ (1997) Living rhodolith beds in the Gulf of California and their implications. Pliocene carbonates and related facies flanking the Gulf of California, Baja California, Mexico 318. p 127

    Google Scholar 

  • Foster M, McConnico L, Lundsten L, Wadsworth T, Kimball T, Brooks L, Medina-López M, Riosmena-Rodríguez R, Hernández-Carmona G, Vasquez-Elisando R (2007) The diversity and natural history of Lithothamnion muelleri-Sargassum horridum community in the Gulf of California. Cienc Mar 33(4):367–384

    Google Scholar 

  • Fredericq S, Arakaki N, Camacho O, Gabriel D, Krayesky D, Self-Krayesky S, Rees G, Joseph Richards J, Sauvage T, Venera-Ponton D, Schmidth WE (2014) A dynamic approach to the study of rhodoliths a case study for the northwestern gulf of México. Cryptogam Algol 35:77–98

    Article  Google Scholar 

  • Freiwald A (1993) Coralline algal coral frameworks-Islands within the phaeophytic kelp belt. Facies 29(1):133–148

    Article  Google Scholar 

  • Freiwald A (1995) Sedimentological and biological aspects in the formation of branched rhodoliths in northern Norway. Beitr Paläontol Osterr 20:7–19

    Google Scholar 

  • Freiwald A (1998) Modern nearshore cold-temperate calcareous sediments in the Troms District, northern Norway. J Sediment Res 68:763–776

    Article  Google Scholar 

  • Freiwald DGA, Henrich R, Schäfer P, Willkomm H (1991) The significance of high-boreal to subarctic maerl deposits in northern Norway to reconstruct Holocene climatic changes and sea level oscillations. Facies 25(1):315–339

    Article  Google Scholar 

  • Gardiner S (1920) The fauna and geography of the Maldive and Laccadive archipelagoes, vol 1. Cambridge University Press, Cambridge, pp 460–471

    Google Scholar 

  • Gherardi DFM (2004) Community structure and carbonate production of a temperate rhodolith bank from Arvoredo Island, southern Brazil. Braz J Oceanogr 52:3–4

    Google Scholar 

  • Gondim AI, Dias TLP, Duarte RCS, Riul P, Lacouth P, Christoffersen ML (2014) Filling a knowledge gap on the biodiversity of Rhodolith-associated Echinodermata from northeastern Brazil. Trop Conserv Sci 7(1):87–99

    Article  Google Scholar 

  • Grall J, Glémarec M (1997a) Using biotic indices to estimate macrobenthic community perturbations in the Bay of Brest. Estuar Coast Shelf Sci 44:43–53

    Article  Google Scholar 

  • Grall J, Glémarec M (1997b) Biodiversity of Maerl beds in Brittany: functional approach and anthropogenic impacts. Vie et Milieu (France) 47:339–349

    Google Scholar 

  • Grall J, Hall‐Spencer J (2003) Problems facing maerl conservation in Brittany. Aquat Conserv Mar Freshw Ecosyst 13(S1):S55–S64

    Article  Google Scholar 

  • Gran HH (1893) Algevegetationen i Tønsbergfjorden. Skrifter udgivne af Videnskabsselskabet i Christiania. I, Mathematisk-naturvidenskabelig klasse. 1893(7): 1–38, 2 tables

    Google Scholar 

  • Granja-Fernandez R, Herrero-Pérezrul MD, López-Pérez RA, Hernández L, Fabián A. Rodríguez-Zaragoza FA, Wallace Jones R, Pineda-López R (2014) Ophiuroidea (Echinodermata) from coral reefs in the Mexican Pacific. Zootaxa, 406:101–145

    Google Scholar 

  • Gray S, Kinross J, Read P, Marland A (2000) The nutrient assimilative capacity of maerl as a substrate in constructed wetland systems for waste treatment. Water Res 34(8):2183–2190

    Article  Google Scholar 

  • Hall-Spencer J (1998) Conservation issues relating to maerl beds as habitats for molluscs. J Conchol Spec Publ 2:271–286

    Google Scholar 

  • Hall-Spencer J (2005) Ban on maerl extraction. Mar Pollut Bull 50:121–124

    Article  Google Scholar 

  • Hall-Spencer JM, Atkinson RJA (1999) Upogebia deltaura (Crustacea: Thalassinidea) in Clyde Sea maerl beds, Scotland. J Mar Biol Assoc U K 79:871–880

    Article  Google Scholar 

  • Hall-Spencer J, Moore PG (2000a) Effects of fishing on non-target species and habitats: biological, conservation and socio-economic issues

    Google Scholar 

  • Hall-Spencer J, Moore PG (2000b) Scallop dredging has profound, long-term impacts on maerl habitats. ICES J Mar Sci J Cons 57(5):1407–1415

    Article  Google Scholar 

  • Hall-Spencer J, Rogers A, Davies J, Foggo A (2007) Deep-sea coral distribution on seamounts, oceanic islands, and continental slopes in the Northeast Atlantic. Bull Mar Sci 81(Supplement 1):135–146

    Google Scholar 

  • Hall-Spencer J, Kelly J, Maggs CA (2010) Assessment of maerl beds in the OSPAR area and the development of a monitoring program. Department of Environment, Heritage and Local Government, Ireland

    Google Scholar 

  • Hall‐Spencer J, Grall J, Moore P, Atkinson R (2003) Bivalve fishing and maerl‐bed conservation in France and the UK—retrospect and prospect. Aquat Conserv Mar Freshw Ecosyst 13(S1):S33–S41

    Article  Google Scholar 

  • Hardiman PA, Rolfe MS, White IC (1976). Lithothamnium studies off the southwest coast of England. ICES report no. CM 1979/K:9

    Google Scholar 

  • Harvey A, Bird F (2008) Community structure of a rhodolith bed from cold-temperate waters (southern Australia). Aust J Bot 56(5):437–450

    Article  Google Scholar 

  • Hernández-Kantun J, Riosmena-Rodríguez R, López Vivas JM, Pacheco Ruiz I (2010) Range extension of Kallymenia spp. (Kallymeniaceae, Rhodophyta) associated with rhodolith beds, new records from the Gulf of California, México. Mar Biodivers Rec 3:1–5

    Google Scholar 

  • Hinojosa‐Arango G, Riosmena‐Rodríguez R (2004) Influence of Rhodolith‐forming species and growth‐form on associated fauna of rhodolith beds in the central‐west Gulf of California, México. Mar Ecol 25(2):109–127

    Article  Google Scholar 

  • IBAMA N° 08, 2 DE FEVEREIRO DE (1996) Regulatory document for fisheries in the Amazonas área. http://www.icmbio.gov.br/cepsul/images/stories/legislacao/Portaria/1996/p_ibama_08_1996_regulamentapescabaciahidroraficarioamazonas.pdf

  • Irvine L, Chamberlain Y (1994) Seaweeds of the British Isles. Volume 1. Rhodophyta. Part 2B. Corallinales, Hildenbrandiales. HMSO, London

    Google Scholar 

  • Jacquotte R (1962) Etude des fonds des maerl de Méditerranée. Recl Trav Stn Mar Endoume 26:141–235

    Google Scholar 

  • James D (2000) Diet, movement, and covering behavior of the sea urchin Toxopneustes roseus in rhodolith beds in the Gulf of California, México. Mar Biol 137(5–6):913–923

    Article  Google Scholar 

  • James NP, Collins LB, Bone Y, Hallock P (1999) Subtropical carbonates in a temperate realm: modern sediments on the southwest Australian shelf. J Sediment Petrol 69:1297–1321

    Article  Google Scholar 

  • Johnson ME, Baarli BG, Cachão M, da Silva CM, Ledesma-Vázquez J, Mayoral EJ, Ramalho RS, Santos A (2012) Rhodoliths, uniformitarianism, and Darwin: Pleistocene and recent carbonate deposits in the Cape Verde and Canary archipelagos. Palaeogeogr Palaeoclimatol Palaeoecol 329:83–100

    Article  Google Scholar 

  • Kamenos N, Cusack M, Moore P (2008) Coralline algae are global palaeothermometers with bi-weekly resolution. Geochim Cosmochim Acta 72(3):771–779

    Article  Google Scholar 

  • Keegan B (1974) The macrofauna of maërl substrates of the West coast of Ireland. Cah Biol Mar 15(4):13–530

    Google Scholar 

  • Kempf M (1970) Notes on the benthic bionomy of the N-NE Brazilian shelf. Mar Biol 5(3):213–224

    Article  Google Scholar 

  • Kempf M, Coutinho PN, Moñs JOS (1968) A plataforma continental do N-NE do Brasil. Nota preliminar sobre a natureza do fundo. D. H. N. Marinha do Brasil, Rio ~6, pp 579–600

    Google Scholar 

  • Kendrick G, Brearley A (1997) Influence of Sargassum spp. attached to rhodoliths on sampling effort and demographic analyses of Sargassum spp. (Sargassaceae, Phaeophyta) attached to a reef. Bot Mar 40(1–6):517–522

    Google Scholar 

  • Kjellman FR (1883) The algae of the arctic sea: a survey of the species, together with an exposition of the general characters and the development of the flora, vol 20. Kongliga svenska Vetenskaps – Akademiens Handlingar

    Google Scholar 

  • Konar B, Riosmena-Rodríguez R, Iken K (2006) Rhodolith bed: a newly discovered habitat in the North Pacific Ocean. Bot Mar 49(4):355–359

    Article  Google Scholar 

  • Lauwaert B, Bekaert K, Berteloot M, De Backer A, Derweduwen J, Dujardin A, Fettweis M, Hillewaert H, Hoffman S, Hostens K, Ides S, Janssens J, Martens C, Michielsen T, Parmentier K, Van Hoey G, Verwaest T (2009) Synthesis report on the effects of dredged material disposal on the marine environment (licensing period 2008–2009). Report by BMM, ILVO, CD, aMT and WL BL/2009/01. 73pp

    Google Scholar 

  • Lavradoi HP, Ignacio BL (2006) Biodiversidade bentónica da regiao central da Zona Economica Exclusiva Brasileira. Documentos REVIZEE Museo Nacional 389 pp

    Google Scholar 

  • Lemoine M (1910) Repartition et mode de vie du maerl (Lithothamnium calcareum) aux environs de Concarneau (Finistère). Ann Inst Oceanogr Monaco 1(3):1–28

    Google Scholar 

  • León-Cisneros K, Riosmena-Rodríguez R, Neto A, Hernández-Carmona G (2009) The red algal genus Scinaia (Nemaliales; Rhodophyta) on the Gulf of California, Mexico: a taxonomic account. Phycologia 48:186–210

    Article  Google Scholar 

  • Littler MM, Littler DS (1984) Models of tropical reef biogenesis: the contribution of algae. In: Round FE, Chapman VJ (eds) Progress in phycological research, vol 3. Biopress, London, pp 323–364

    Google Scholar 

  • López-Benito M (1963) Estudio de la composición química del Lithothamnion calcareum (Aresch.) y su aplicación como corrector de cultivo. Investig Pesq 23:53–70

    Google Scholar 

  • Lowry JK, Stoddart HE (2012) Australian and South African conicostomatine amphipods (Amphipoda: Lysianassoidea: Lysianassidae: Conicostomatinae subfam. nov.). Zootaxa 3248:43–65

    Google Scholar 

  • Maggs C (1983) A phenological study of the epiflora of two maerl beds in Galway Bay. PhD thesis, National University of Ireland, Ireland

    Google Scholar 

  • Martin S, Gattuso JP (2009) Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob Chang Biol 15(8):2089–2100

    Article  Google Scholar 

  • Mathis BJ, Kohn AJ, Goldberg N (2005) Rhodoliths: the inside story. In: Wells FE, Walker DI, Kendrick (eds) The marine flora and fauna of esperance, Western Australia, 147.157 Wesern Australian Museum

    Google Scholar 

  • Metri R (2006) Ecologia de un banco de algas calcareas de Reserva Biológica Marinha do Arvoredo, Santa Catarina, Brazil. Ph D thesis Universidad Federal Parana 110 p

    Google Scholar 

  • Metri R, Rocha R (2008) Bancos de algas calcárias, um ecossistema rico a ser preservado. Nat Conserv Rev Bras Conserv Nat 6(1):8

    Google Scholar 

  • Miranda F (1934) Materiales para una flora marina de las Rías Bajas gallegas. Bol R Soc Esp Hist Nat Secc Biol 34:165–180

    Google Scholar 

  • Mora-Bermúdez J (1980) Poblaciones bentónicas de la Ría de Arosa. Ph.D. thesis, The University of Santiago de Compostela, Spain

    Google Scholar 

  • Myers A, McGrath D (1980) A new species of Stenothoe Dana (Amphipoda, Gammaridea) from maërl deposits in Kilkieran Bay. J Life Sci (Dublin) 2:15–18

    Google Scholar 

  • Myers A, McGrath D (1983) The genus Listriella (Crustacea: Amphipoda) in British and Irish waters, with the description of a new species. J Marine Biol Assoc U K 63(02):347–353

    Article  Google Scholar 

  • Neill KF, Nelson WA, D’Archino R, Leduc D, Farr TJ (2014) Northern New Zealand rhodoliths: assessing faunal and floral diversity in physically contrasting beds. Mar Biodivers. doi:10.1007/s12526-014-0229-0

    Google Scholar 

  • Nelson W (2009) Calcified macroalgae–critical to coastal ecosystems and vulnerable to change: a review. Mar Freshw Res 60(8):787–801

    Article  Google Scholar 

  • Nicoletti L, Paganelli D, Gabellini M (2006) Environmental aspects of relict sand dredging for beach nourishment: proposal for a monitoring protocol. Quaderno ICRAM n. 5. 155 pp

    Google Scholar 

  • Nunn J (1993) The molluscan fauna associated with maerl. Conchologists Newsl 125:161–167

    Google Scholar 

  • Pascheli C, Riul P, Riosmena-Rodríguez R, Scherner F, Nunes M, Hall-Spencer JM, Cabral de Oliveira E, Horta P (2013) Seasonal and depth-driven changes in rhodolith bed structure and associated macroalgae off Arvoredo island (southeastern Brazil). Aquat Bot 111:62–65

    Article  Google Scholar 

  • Peña V, Bárbara I (2008) Biological importance of an Atlantic European maerl bed off Benencia Island (northwest Iberian Peninsula). Bot Mar 51:493–505

    Article  Google Scholar 

  • Peña V, De Clerck O, Afonso-Carrillo J, Ballesteros E, Bárbara I, Barreiro R, Le Gall L et al (2014) An integrative systematic approach to species diversity and distribution in the genus Mesophyllum (Corallinales, Rhodophyta) in Atlantic and Mediterranean Europe. Eur J Phycol 50(1):1–17

    Google Scholar 

  • Pérès JM, Piccard J (1955) Biotopes et biocoenoses de la Méditerranée occidentale comparées à ceux de la manche et de l’Atlantique nord-oriental. Arch Zool Exp Géné 92(1):1–71

    Google Scholar 

  • Perry CT (2005) Morphology and occurrence of rhodoliths in siliciclastic, intertidal environments from a high latitude reef setting, southern Mozambique. Mar Geol 214:143–161

    Article  Google Scholar 

  • Pruvot G (1897) Essai sur les fonds et la faune de la Manche occidentale comparés à ceux du Golfe du Lion.-,irch. zooz. exp. gén., 30 sér., 5, 511–617

    Google Scholar 

  • Ramos-Esplá AA (1992) Ascidias litorales del Mediterráneo Ibérico: Faunística, Ecología y Biogeografía. Unpublished Ph. D. thesis, Universidad de Alicante 440 pp

    Google Scholar 

  • Reyes-Bonilla et al (1998) Reyes-Bonilla H, Riosmena-Rodríguez R, Foster MS 1997. Hermatipyc corals associated to rhodolith beds in the Gulf of California, México. Pac Sci 51(3):328–337

    Google Scholar 

  • Riera R, Delgado JD, Rodríguez M, Monterroso O, Ramos E (2012) Macrofaunal communities of threatened subtidal maërl seabeds on Tenerife (Canary Islands, north-east Atlantic Ocean) in summer. Acta Oceanol Sin 31:98–105

    Article  Google Scholar 

  • Riera R, Ramos E, Herrera R, Moro L (2014) Jassa marmorata (Holmes, 1905) and Monocorophium acherusicum (Costa, 1853) New Amphipods (Crustacea: Amphipoda) to the Canary Islands. Rev Acad Canaria Cienc XXVI:27–31

    Google Scholar 

  • Riosmena-Rodríguez R, Medina-Lopez M (2011) The role of rhodolith beds in the recruitment of invertebrate species in the Southwestern Gulf of Mexico. All Flesh is Green, Plant-Animal Interrelationships Cellular Origin, Life in Extreme Habitats and Astrobiology. Springer, New York, 16:417–428

    Google Scholar 

  • Riosmena-Rodríguez R, Steller DS, Foster MS (2007) Prefacio a trabajos selectos sobre rodolitos. Cienc Mar 33(4):i–iii

    Google Scholar 

  • Riosmena-Rodríguez R, Steller D, Hinojosa-Arango G, Foster M (2010) Reefs that rock and roll: biology and conservation of rhodolith beds in the Gulf of California. In: Marine biodiversity and conservation in the Gulf of California. University of Arizona Press and Sonoran Desert Museum, Tuscon

    Google Scholar 

  • Riosmena-Rodríguez R, Mandenvelt G, Horta P, Figueiredo M (2015) Systematics and biogeography of the subclass Corallinophycideae (Rhodophyta) from the Atlantic Ocean. Phytotaxa 190:1–2

    Article  Google Scholar 

  • Riul P, Targino CH, Farias JDN, Visscher PT, Horta PA (2008) Decrease in Lithothamnion sp. (Rhodophyta) primary production due to the deposition of a thin sediment layer. J Mar Biol Assoc UK 88(01):17–19

    Article  Google Scholar 

  • Rivera M, Riosmena-Rodríguez R, Foster M (2004) Age and growth of Lithothamnion muelleri (Corallinales, Rhodophyta) in the southwestern Gulf of California, Mexico. Cienc Mar 30(1B):235–249

    Google Scholar 

  • Rocha RM, Metri R, Omuro J (2006) Spatial distribution and abundance of ascidians in a bank of coralline algae at Porto Norte, Arvoredo Island, Santa Catarina. J Coast Res 39:1676–1679

    Google Scholar 

  • Rowe GA, Sheader M, Jensen AC (1990) The infauna of handfast point maërl bed. Nature Conservancy Council, Peterborough, 57 pp

    Google Scholar 

  • Sala E, Aburto-Oropeza O, Paredes G, Parra I, Barrera JC, Dayton PK (2002) A general model for designing networks of marine reserves. Science 298(5600):1991–1993

    Article  Google Scholar 

  • Sánchez-Ibarra C, Bermúdez-García DM, Bezaury-Creel JE, Lasch-Thaler C, Rodríguez-Dowdell N, Cárdenas-Torres N, Rojas-González de Castilla S, Gondor A (2013). Plan de acción para la conservación y aprovechamiento sustentable de la biodiversidad terrestre y marina de la región Golfo de California y Pacífico Sudcaliforniano. Comisión Nacional de Áreas Naturales Protegidas (CONANP), The Nature Conservancy (TNC), Fondo Mexicano para la Conservación de la Naturaleza, A.C., 294 pp, México

    Google Scholar 

  • Segawa S (1959) Coralline algae. Bull Jpn Soc Phycol 2(2):33–39

    Google Scholar 

  • Sewell AA, Johnson ME, Backus DH, Ledesma-Vázquez J (2007) Rhodolith detritus impounded by a coastal dune on Isla Coronados. Gulf Calif Cienc Mar 33(4):483–494

    Google Scholar 

  • Sheehan EV, Bridger D, Attrill MJ (2015) The ecosystem service value of living versus dead biogenic reef. Estuar Coast Shelf Sci 154:248–254

    Article  Google Scholar 

  • Siesser WG (1972) Relict algal nodules (rhodolites) from the South African continental shelf. J Geol 80:611–616

    Article  Google Scholar 

  • Sitja C, Maldonado M (2014) New and rare sponges from the deep shelf of the Alboran Island (Alboran Sea, Western Mediterranean). Zootaxa 3760(2):141–179

    Article  Google Scholar 

  • Soares-Gomes A, Pires-Vanin AMS (2003) Padrões de abundância, riqueza e diversidade de moluscos bivalves na plataforma continental ao largo de Ubatuba, São Paulo, Brasil: uma comparação metodológica. Rev Bras Zool 20:717–772

    Article  Google Scholar 

  • Steller DL, Cáceres-Martínez C (2009) Coralline algal rhodoliths enhance larval settlement and early growth of the Pacific calico scallop Argopecten ventricosus. Mar Ecol Prog Ser 396:49–60

    Article  Google Scholar 

  • Steller DL, Foster MS (1995) Environmental factors influencing distribution and morphology of rhodoliths in Bahía Concepción, BCS, México. J Exp Mar Biol Ecol 194(2):201–212

    Article  Google Scholar 

  • Steller DL, Riosmena-Rodríguez R, Foster M, Roberts C (2003) Rhodolith bed diversity in the Gulf of California: the importance of rhodolith structure and consequences of disturbance. Aquat Conserv 13:S5–S20

    Article  Google Scholar 

  • Steneck RS (1986) The ecology of coralline algal crusts: convergent patterns and adaptative strategies. Annu Rev Ecol Syst 17:273–303

    Article  Google Scholar 

  • Sturaro N, Guerra-García JM (2012) A new species of Caprella (Crustacea: Amphipoda) from the Mediterranean Sea. Helgol Mar Res 66(1):33–42

    Article  Google Scholar 

  • Tâmega FTS, Riosmena-Rodríguez R, Mariath R, Figueiredo MAO (2014) Nongeniculate coralline red algae (Rhodophyta: Corallinales) in coral reefs from Northeastern Brazil and a description of Neogoniolithon atlanticum sp. nov. Phytotaxa 190(1):277–298, 28 fig., 4 tables

    Article  Google Scholar 

  • Teichert S (2013) Rhodoliths (Corallinales, Rhodophyta) as a Biosedimentary System in Arctic Environments(Svalbard Archipelago, Norway). PhD Thesis, Erlangen University: Germany. 160 pp

    Google Scholar 

  • UNEP/IUCN/GIS Posidonie (1990) Livre rouge ‘Gerard Vuignier’ des végétaux, peuplements et paysages marins menacés de Mediterranée. MAP Technical Report Series 43; United Nations Environment Programme, Athens, ! 250 pp

    Google Scholar 

  • Veale L, Thompson R, Bates M (1999). Isle of Man sublittoral survey: 1994–1997. In: Davies H (ed) Irish sea forum. Isle of Man, pp 35–49

    Google Scholar 

  • Villas-Bôas AB, Tâmega FTDS, Andrade M, Coutinho R, Figueiredo MADO (2014) Experimental effects of sediment burial and light attenuation on two coralline algae of a deep water rhodolith bed in Rio de Janeiro, Brazil. Cryptogam Algol 35(1):67–76

    Article  Google Scholar 

  • Weber-van Bosse A (1913) Marine algae, Rhodophyceae, of the “Sealark” Expedition, collected by Mr. J Stanley Gardiner. Botany 8:105–142

    Google Scholar 

  • Weber-van Bosse A, Foslie M (1904) The Corallinaceae of the Siboga-expedition. Siboge Expeditie 61:1–110

    Google Scholar 

  • Wilson S, Blake C, Berges JA, Maggs CA (2004) Environmental tolerances of free-living coralline algae (maerl): implications for European marine conservation. Biol Conserv 120(2):279–289

    Article  Google Scholar 

  • Woelkerling WJ, Irvine L, Harvey AS (1993) Growth-forms in non-geniculate coralline red algae (Corallinales, Rhodophyta). Aust Syst Bot 6(4):277–293

    Article  Google Scholar 

Download references

Acknowledgements

RRR acknowledges the support of CONACYT-SEMARNAT for the support to the current research throughout the grant 25343. Also, I thank the patience and the continuous review of this chapter by Julio Aguirre and Wendy Nelson to improve in many ways the present version. I deeply thank Mike Foster and Sung Min Boo for the access to some of their pictures for figures in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Riosmena-Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Riosmena-Rodríguez, R. (2017). Natural History of Rhodolith/Maërl Beds: Their Role in Near-Shore Biodiversity and Management. In: Riosmena-Rodríguez, R., Nelson, W., Aguirre, J. (eds) Rhodolith/Maërl Beds: A Global Perspective. Coastal Research Library, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-29315-8_1

Download citation

Publish with us

Policies and ethics