Skip to main content

Mereocompactness and Duality for Mereotopological Spaces

  • Chapter
  • First Online:
J. Michael Dunn on Information Based Logics

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 8))

Abstract

Mereotopology studies relations between regions of space, including the contact relation. It leads to an abstract notion of Boolean contact algebra which has been shown to be representable as an algebra of regular closed subsets of a compact topological space. Here we define mereotopological spaces and their mereomorphisms, and construct a dual equivalence between the category of Boolean contact algebras and a category of mereotopological spaces that have a property we call mereocompactness, strictly stronger than ordinary compactness. This is a further illustration of the kind of duality that has been widely used in the semantic analysis of propositional logics, and which has been a significant theme in the research of J. Michael Dunn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For categories A of algebras and S of structures, if the assignments \(A\mapsto A_+\) and \(S\mapsto S^+\) extend to contravariant functors from A to S and vice versa, then this constitutes a dual equivalence when the composition of these functors in either order gives functors that are naturally isomorphic to the identity functors on A and S, respectively. This perspective on models of propositional logic was introduced (for modal algebras and Kripke frames) in the first author’s thesis (Goldblatt 1974). The concept of natural isomorphism is explained in the present article at the end of Sect. 4.

  2. 2.

    Further work on the Region Connection Calculus is surveyed in (Cohn et al. 1997).

  3. 3.

    See the Introductions of papers (Düntsch and Winter 2005; Dimov and Vakarelov 2006a) for an overview of the background literature on region-based theories of space.

  4. 4.

    Henkin et al. 1971, 0.2.9.

  5. 5.

    Note that \(a\cdot b\subseteq a\cap b\) for regular closed a and b, so \(a\cap b\ne \emptyset \) is a weaker assertion here than \(a\cdot b\ne 0\).

  6. 6.

    Grills originate with Choquet (1947) and clans with Thron (1973).

  7. 7.

    See (Mac Lane 1998, I.4) for the theory of natural transformations and isomorphisms.

References

  • Aiello, M., Pratt-Hartmann, I., & van Benthem, J. (2007). Handbook of spatial logics. Springer.

    Google Scholar 

  • Allwein, G., & Dunn, J. M. (1993). Kripke semantics for linear logic. The Journal of Symbolic Logic, 58(2), 514–545.

    Google Scholar 

  • Balbes, R. & Dwinger, P. (1974). Distributive lattices. University of Missouri Press.

    Google Scholar 

  • Bimbó, K., & Dunn, J. M. (2008). Generalized Galois logics: Relational semantics of nonclassical logical calculi, vol. 188 of CSLI lecture notes. CA: CSLI Publications.

    Google Scholar 

  • Choquet, G. (1947). Sur les notions de filtre et de grille. Comptes Rendus de l’Académie des Sciences Paris, 224, 171–173.

    Google Scholar 

  • Clarke, B. L. (1981). A calculus of individuals based on ‘connection’. Notre Dame Journal of Formal Logic, 22(3), 204–218.

    Article  Google Scholar 

  • Cohn, A. G., Bennett, B., Gooday, J., & Gotts, N. M. (1997). Qualitative spatial representation and reasoning with the region connection calculus. GeoInformatica, 1(3), 275–316.

    Article  Google Scholar 

  • Dimov, G., & Vakarelov, D. (2006a). Contact algebras and region-based theory of space: A proximity approach - I. Fundamenta Informaticae, 74, 209–249.

    Google Scholar 

  • Dimov, G., & Vakarelov, D. (2006b). Contact algebras and region-based theory of space: A proximity approach - II. Fundamenta Informaticae, 74, 251–282.

    Google Scholar 

  • Dunn, J. M. (1982). A relational representation of quasi-boolean algebras. Notre Dame Journal of Formal Logic, 23, 353–357.

    Article  Google Scholar 

  • Dunn, J. M. (1993). Star and perp: Two treatments of negation. Philosophical perspectives (Vol. 7, pp. 331–357). (Language and Logic, J. E. Tomberlin (Ed.)).

    Google Scholar 

  • Dunn, J. M. (1995). Positive modal logic. Studia Logica, 55, 301–317.

    Article  Google Scholar 

  • Dunn, J. M. (2001). A representation of relation algebras using Routley-Meyer frames. In C. A. Anderson & M. Zelëny (Eds.) Logic, Meaning and Computation. Essays in Memory of Alonzo Church (pp. 77–108). Kluwer Academic Publishers.

    Google Scholar 

  • Dunn, J. M. & Hardegree, G. M. (2001). Algebraic methods in philosophical logic, Vol. 41 of Oxford logic guides. Oxford: Oxford University Press.

    Google Scholar 

  • Dunn, J. M., Gehrke, M., & Palmigiano, A. (2005). Canonical extensions and relational completeness of some substructural logics. The Journal of Symbolic Logic, 70(3), 713–740.

    Google Scholar 

  • Düntsch, I., & Winter, M. (2005). A representation theorem for Boolean contact algebras. Theoretical Computer Science, 347, 498–512.

    Google Scholar 

  • Goldblatt, R. (1974). Metamathematics of Modal Logic, PhD thesis, Victoria University, Wellington. Included in (Goldblatt 1993).

    Google Scholar 

  • Goldblatt, R. (1993). Mathematics of modality, vol. 43 of CSLI lecture notes. CA: CSLI Publications.

    Google Scholar 

  • Hartonas, C., & Dunn, J. M. (1997). Stone duality for lattices. Algebra Universalis, 37, 391–401.

    Article  Google Scholar 

  • Henkin, L., Monk, J. D. & Tarski, A. (1971). Cylindric algebras I. North-Holland.

    Google Scholar 

  • Kontchakov, R., Pratt-Hartmann, I., Wolter, F. & Zakharyaschev, M. (2008). Topology, connectedness, and modal logic, In Goldblatt, R., & Areces, C. (Eds.) Advances in Modal Logic (Vol. 7, pp. 151–176). College Publications. www.aiml.net/volumes/volume7/.

  • de Laguna, T. (1922). Point, line, and surface, as sets of solids. Journal of Philosophy, 19(17), 449–461.

    Article  Google Scholar 

  • Lutz, C., & Wolter, F. (2006). From varieties of algebras to covarieties of coalgebras. Logical Methods in Computer Science, 2(2).

    Google Scholar 

  • Mac Lane, S. (1998). Categories for the working mathematician (2nd ed.). Springer.

    Google Scholar 

  • Nenov, Y. & Vakarelov, D. (2008). Modal logics for mereotopological relations. In R. Goldblatt & C. Areces (Eds.) Advances in Modal Logic (Vol. 7, pp. 249–272). College Publications. www.aiml.net/volumes/volume7/.

  • Pratt-Hartmann, I. (2007). First-order mereotopology. In M. Aiello, I. Pratt-Hartmann & J. van Benthem (Eds.) Handbook of Spatial Logics (pp.13–97). Springer.

    Google Scholar 

  • Randell, D. A., & Cohn, A. G. (1989). Modelling topological and metrical properties of physical processes. In R. Brachman, H. Levesque & R. Reiter (Eds.) Proceedings 1st International Conference on the Principles of Knowledge Representation and Reasoning (pp. 55–66). Morgan Kaufman.

    Google Scholar 

  • Randell, D. A., Cui, Z., & Cohn, A. G. (1992). A spatial logic based on regions and connection. In B. Nebel, C. Rich & W. Swartout (Eds.) Proceedings 3rd International Conference on the Principles of Knowledge Representation and Reasoning (pp. 165–176). Morgan Kaufman.

    Google Scholar 

  • Rasiowa, H., & Sikorski, R. (1963). The Mathematics of Metamathematics. Warsaw: PWN-Polish Scientific Publishers.

    Google Scholar 

  • Thron, W. J. (1973). Proximity structures and grills. Mathematische Annalen, 206, 35–62.

    Article  Google Scholar 

  • Vakarelov, D. (2007). Region-based theory of space: Algebras of regions, representation theory, and logics. In D. M. Gabbay, S. S. Goncharov & M. Zakharyaschev (Eds.) Mathematical Problems from Applied Logic II (pp.267–348). Springer.

    Google Scholar 

  • Whitehead, A. N. (1929). Process and Reality. Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Goldblatt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Goldblatt, R., Grice, M. (2016). Mereocompactness and Duality for Mereotopological Spaces. In: Bimbó, K. (eds) J. Michael Dunn on Information Based Logics. Outstanding Contributions to Logic, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-29300-4_15

Download citation

Publish with us

Policies and ethics