Skip to main content

Numerical Modeling

  • Chapter
  • First Online:
Integrative Understanding of Shale Gas Reservoirs

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 990 Accesses

Abstract

Realistic modeling of shale gas reservoir is an important issue in these days. For the accurate modeling of shale reservoir, distinguishing features of shale should be considered. Natural fracture system can be simplified to dual porosity and dual permeability models. These models present the system as an orthogonal set of intersecting fractures and cubic matrix blocks. Adsorption of hydrocarbon gas in the matrix surface is also considered with Langmuir isotherm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson D et al (2010) Analysis of production data from fractured shale gas wells. Soc Pet Eng J 15(01):64–75. doi:10.2118/115514-PA

    Google Scholar 

  • Cho Y et al (2013) Pressure-dependent natural-fracture permeability in shale and its effect on shale-gas well production. SPE Res Eval Eng 16(2):216–228. doi:10.2118/159801-PA

    Google Scholar 

  • Cipolla CL et al (2010) Reservoir modeling in shale-gas reservoirs. SPE Res Eval Eng 13(4):638–653. doi:10.2118/125530-PA

    MathSciNet  Google Scholar 

  • CMG (2015) GEM user guide. Computer Modelling Group Ltd, Calgary, Alberta

    Google Scholar 

  • Dong JJ et al (2010) Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A. Int J Rock Much Min Sci 47(7):1141–1157. doi:10.1016/j.ijrmms.2010.06.019

    Article  Google Scholar 

  • Evans RD and Civan F (1994) Characterization of non-darcy multiphase flow in petroleum bearing formation. Dissertation, University of Oklahoma

    Google Scholar 

  • Kazemi H et al (1978) An efficient multicomponent numerical simulator. Soc Pet Eng J 18(05):355–368. doi:10.2118/6890-PA

    Article  Google Scholar 

  • Kim TH, Lee KS (2015) Pressure-transient characteristics of hydraulically fractured horizontal wells in shale-gas reservoirs with natural- and rejuvenated-fracture networks. J Can Pet Tech 54(04):245–258. doi:10.2118/176027-PA

    Article  Google Scholar 

  • Kim TH et al (2014) Development and application of type curves for pressure transient analysis of multiple fractured horizontal wells in shale gas reservoirs. Paper presented at the offshore technology conference-Asia, Kuala Lumpur, Malaysia, 25–28 March 2014. doi:10.4043/24881-MS

  • Kim TH et al (2015) Integrated reservoir flow and geomechanical model to generate type curves for pressure transient responses in shale gas reservoirs. Paper presented at the twenty-fifth international offshore and polar engineering conference, Kona, Hawaii, 21–26 June 2015

    Google Scholar 

  • Klinkenberg LJ (1941) The permeability of porous media to liquids and gases. In: Drilling and production practice, New York, New York, Jan 1941

    Google Scholar 

  • Lee SJ et al (2014) Development and application of type curves for pressure transient analysis of horizontal wells in shale gas reservoirs. J Oil Gas Coal T 8(2):117–134. doi:10.1504/IJOGCT.2014.06484

    Article  Google Scholar 

  • Rubin B (2010) Accurate simulation of non-Darcy flow in stimulated fractured shale reservoirs. Paper presented at the SPE western regional meeting, Anaheim, California, 27–29 May 2010. doi:10.2118/132093-MS

  • Tran D et al (2005) An overview of iterative coupling between geomechanical deformation and reservoir flow. Paper presented at the SPE international thermal operations and heavy oil symposium, Calgary, Alberta, 1–3 November 2005

    Google Scholar 

  • Tran D et al (2010) Improved gridding technique for coupling geomechanics to reservoir flow. Soc Pet Eng J 15(1):64–75. doi:10.2118/115514-PA

    Google Scholar 

  • Warren JE, Root PJ (1963) The behavior of naturally fractured reservoirs. Soc Pet Eng J 3(3):245–255

    Article  Google Scholar 

  • Yu W et al (2013) Sensitivity analysis of hydraulic fracture geometry in shale gas reservoirs. J Pet Sci Eng 113:1–7. doi:10.1016/j.petrol.2013.12.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Sang Lee .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Lee, K.S., Kim, T.H. (2016). Numerical Modeling. In: Integrative Understanding of Shale Gas Reservoirs. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-29296-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29296-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29295-3

  • Online ISBN: 978-3-319-29296-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics