Skip to main content

Characteristics of Shale Reservoirs

  • Chapter
  • First Online:
Integrative Understanding of Shale Gas Reservoirs

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

Shale gas reservoir shows several features dissimilar with conventional reservoir which make it difficult to understand behavior of it. In this chapter, these features such as natural fracture system, adsorption/desorption of gas, diffusion in nanopores, non-Darcy flow, and stress-dependent compaction are presented. In general, shale gas reservoir includes natural fractures which are believed to play a significant role in hydraulic fracture propagation and gas production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal A, Prabhu SV (2008) Survey on measurement of tangential momentum accommodation coefficient. J Vac Sci Technol A 26(4):634–645. doi:10.1116/1.2943641

    Article  Google Scholar 

  • Arkilic EB et al (2001) Mass flow and tangential momentum accommodation in silicon micromachined channels. J Fluid Mech 437:29–43

    Article  MATH  Google Scholar 

  • Azom P, Javadpour F (2012) Dual-continuum modeling of shale and tight gas reservoirs. Paper presented at the SPE annual technical conference and exhibition, San Antonio, Texas, 8–10 Oct 2012. doi:10.2118/159584-MS

  • Barenblatt GI et al (1960) Basic concept in the theory of seepage of homogeneous liquids in fissured rocks. J Appl Math Mech 24(5):1286–1303

    Article  MathSciNet  MATH  Google Scholar 

  • Beskok A, Karniadakis GE (1999) A model for flows in channels, pipes, and ducts at micro and nano scales. Microsc Therm Eng 3(1):43–77. doi:10.1080/108939599199864

    Article  Google Scholar 

  • Brown GP et al (1946) The flow of gases in pipes at low pressures. J Apple Phys 17:802–813

    Article  Google Scholar 

  • Brunauer S et al (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319

    Article  Google Scholar 

  • Carter RD (1962) Solutions of unsteady-state radial gas flow. J Pet Tech 14(05):549–554. doi:10.2118/108-PA

    Article  Google Scholar 

  • Chareonsuppanimit P et al (2012) High-pressure adsorption of gases on shales: measurements and modeling. Int J Coal Geol 95:34–46. doi:10.1016/j.coal.2012.02.005

    Article  Google Scholar 

  • Cho Y et al (2013) Pressure-dependent natural-fracture permeability in shale and its effect on shale-gas well production. SPE Res Eval Eng 16(2):216–228. doi:10.2118/159801-PA

    Google Scholar 

  • Civan F (2010) Effective correlation of apparent gas permeability in tight porous media. Transp Porous Med 82(2):375–384. doi:10.1007/s11242-009-9432-z

    Article  MathSciNet  Google Scholar 

  • Cooke CE (1973) Conductivity of fracture proppants in multiple layers. J Pet Tech 25(09):1101–1107. doi:10.2118/4117-PA

    Article  Google Scholar 

  • Coppens M-O (1999) The effect of fractal surface roughness on diffusion and reaction in porous catalysts from fundamentals to practical applications. Catal Today 53(2):225–543. doi:10.1016/S0920-5861(99)00118-2

    Article  MathSciNet  Google Scholar 

  • Coppens M-O, Dammers AJ (2006) Effects of heterogeneity on diffusion in nanopores from inorganic materials to protein crystals and ion channels. Fluid Phase Equilibr 241(1–2):308–316. doi:10.1016/j.fluid.2005.12.039

    Article  Google Scholar 

  • Cornell D, Katz DL (1953) Flow of gases through consolidated porous media. Ind Eng Chem 45(10):2145–2152. doi:10.1021/ie50526a021

    Article  Google Scholar 

  • Dacun L, Thomas WE (2001) Literature review on correlations of the non-darcy coefficient. Paper presented at the SPE Permian basin oil and gas recovery conference, Midland, Texas, 15–17 May 2001. doi:org/10.2118/70015-MS

  • Darabi H et al (2012) Gas flow in ultra-tight shale strata. J Fluid Mech 710:641–658. doi:10.1017/jfm.2012.424

    Article  MathSciNet  MATH  Google Scholar 

  • Dong JJ et al (2010) Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A. Int J Rock Much Min Sci 47(7):1141–1157. doi:10.1016/j.ijrmms.2010.06.019

    Article  Google Scholar 

  • Etminan SR et al (2014) Measurement of gas storage processes in shale and of the molecular diffusion coefficient in kerogen. Int J Coal Geol 123:10–19. doi:10.1016/j.coal.2013.10.007

    Article  Google Scholar 

  • Evans EV, Evans RD (1988) The influence of an immobile or mobile saturation on non-Darcy compressible flow of real gases in propped fractures. J Pet Tech 1345–1351. doi:10.2118/15066-PA

    Google Scholar 

  • Evans RD, Civan F (1994) Characterization of non-darcy multiphase flow in petroleum bearing formation. U.S. Department of Energy, Washington, D.C

    Book  Google Scholar 

  • Fenton L (1960) The sum of log-normal probability distributions in scatter transmission systems. IEEE T Commun 8(1):57–67. doi:10.1109/TCOM.1960.1097606

    Article  MathSciNet  Google Scholar 

  • Florence FA et al (2007) Improved permeability prediction relations for low-permeability sands. Paper presented at SPE Rocky mountain oil and gas technology symposium, Denver, Colorado, 16–18 April 2007

    Google Scholar 

  • Forchheimer P (1901) Wasserbewegung durch boden. Zeits V Deutsch Ing 45:1781–1901

    Google Scholar 

  • Freeman CM et al (2012) Measurement, modeling, and diagnostics of flowing gas composition changes in shale gas wells. Paper presented at the SPE Latin American and Caribbean petroleum engineering conference, Mexico City, Mexico, 16–18 April 2012

    Google Scholar 

  • Gad-el-Hak M (1999) The fluid mechanics of microdevices—the freeman scholar lecture. J Fluids Eng 121(1):5. doi:10.1115/1.2822013

    Article  Google Scholar 

  • Gao C et al (1994) Modeling multilayer gas reservoirs Including sorption effects. Paper presented at the SPE eastern regional conference and exhibition, Charleston, West Virginia, 8–10 Nov 1994

    Google Scholar 

  • Geertsma J (1974) Estimating the coefficient of inertial resistance in fluid flow through porous media. Soc Pet Eng J 14(05):445–450. doi:10.2118/4706-PA

    Article  Google Scholar 

  • Green L, Duwez PJ (1951) Fluid flow through porous metals. J Appl Mech 18(1):39

    Google Scholar 

  • Hosseini SM (2013) On the linear elastic fracture mechanics application in Barnett shale hydraulic fracturing. Paper presented at the 47th U.S. rock mechanics/geomechanics symposium, San Francisco, California, 23–26 June 2013

    Google Scholar 

  • Javadpour F (2009) Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone). J Can Pet Tech 48(8):16–21. doi:10.2118/09-08-16-DA

    Article  Google Scholar 

  • Javadpour F et al (2007) Nanoscale gas flow in shale gas sediments. J Can Pet Tech 46(10):55–61. doi:10.2118/07-10-06

    Article  Google Scholar 

  • Jones FO, Owens WW (1980) A laboratory study of low-permeability gas sands. J Pet Technol 32(9):1631–1640

    Article  Google Scholar 

  • Klinkenberg LJ (1941) The permeability of porous media to liquids and gases. In: Drilling and production practice, New York, New York, January 1941

    Google Scholar 

  • Kuila U, Prasad M (2013) Specific surface area and pore-size distribution in clays and shales. Geophys Prosp 61(2):341–362

    Article  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1403–1461

    Article  Google Scholar 

  • Li Y, Ghassemi A (2012) Creep behavior of Barnett, Haynesville, and Marcellus shale. Paper presented at the 46th U.S. rock mechanics/geomechanics symposium, Chicago, Illinois, 24–27 June 2012

    Google Scholar 

  • Moghanloo RG et al (2013) Contribution of methane molecular diffusion in kerogen to gas-in-place and production. Paper presented at the SPE western regional and AAPG pacific section meeting 2013 Joint technical conference, Monterey, California, 19–25 April. doi:10.2118/165376-MS

  • Pedrosa OA (1986) Pressure transient response in stress-sensitive formations. Paper presented at the SPE California regional meeting, Oakland, California, 2–4 April 1986. doi:10.2118/15115-MS

  • Raghavan R, Chin LY (2004) Productivity changes in reservoirs with stress-dependent permeability. SPE Res Eval Eng 7(4):308–315. doi:10.2118/88870-PA

    Google Scholar 

  • Rathakrishnan E (2004) Gas dynamics. Prentice-hall of India Pvt Ltd, New Delhi, India

    Google Scholar 

  • Rezaee R (eds) (2015) Fundamental of gas shale reservoirs. Wiley, New Jersey

    Google Scholar 

  • Roy S et al (2003) Modeling gas flow through microchannels and nanopores. J Appl Phys 93:4870–4879. doi:10.1063/1.1559936

    Article  Google Scholar 

  • Shabro V et al (2012) Finite-difference approximation for fluid-flow simulation and calculation of permeability in porous media. Transport Porous Med 94(3):775–793. doi:10.1007/s11242-012-0024-y

    Article  Google Scholar 

  • Silin D, Kneafsey T (2012) Shale gas: nanometer-scale observations and well modeling. J Can Pet Tech 51(6):464–475

    Article  Google Scholar 

  • Sing KSW et al (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619

    Article  Google Scholar 

  • Singh H et al (2014) Nonempirical apparent permeability of shale. SPE Res Eval Eng 17(3):414–424. doi:10.2118/170243-PA

    Google Scholar 

  • Stewart G (2011) Well test design and analysis. Pennwell, Tulsa, Oklahoma

    Google Scholar 

  • Swift GW, Kiel OG (1962) The prediction of gas-well performance including the effect of non-darcy flow. J Pet Tech 14(07):791–798. doi:10.2118/143-PA

    Article  Google Scholar 

  • Tek MR et al (1962) The effect of turbulence on flow of natural gas through porous reservoirs. J Pet Tech 14(07):799–806. doi:10.2118/147-PA

    Article  Google Scholar 

  • Tran D et al (2005) An overview of iterative coupling between geomechanical deformation and reservoir flow. Paper presented at the SPE international thermal operations and heavy oil symposium, Calgary, Alberta, Canada, 1–3 Nov 2005. doi:10.2118/97879-MS

  • Tran D et al (2010) Improved gridding technique for coupling geomechanics to reservoir flow. Soc Pet Eng J 15(1):64–75. doi:10.2118/115514-PA

    Google Scholar 

  • Veltzke T, Thöming J (2012) An analytically predictive model for moderately rarefied gas flow. J Fluid Mech 698:406–422. doi:10.1017/jfm.2012.98

    Article  MathSciNet  MATH  Google Scholar 

  • Warren JE, Root PJ (1963) The behavior of naturally fractured reservoirs. Soc Petrol Eng J 3(3):245–255

    Article  Google Scholar 

  • Yu W et al (2014) Evaluation of gas adsorption in Marcellus shale. Paper presented at the SPE annual technical conference and exhibition, Amsterdam, The Netherlands, 27–29 Oct 2014

    Google Scholar 

  • Zhang T et al (2012) Effect of organic-matter type and thermal maturity on methane adsorption in shale gas systems. Org Geochem 47:120–131. doi:10.1016/j.orggeochem.2012.03.012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Sang Lee .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Lee, K.S., Kim, T.H. (2016). Characteristics of Shale Reservoirs. In: Integrative Understanding of Shale Gas Reservoirs. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-29296-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29296-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29295-3

  • Online ISBN: 978-3-319-29296-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics