Skip to main content

Reproduction and Larval Development in Antarctic Krill (Euphausia superba)

  • Chapter
  • First Online:

Part of the book series: Advances in Polar Ecology ((AVPE))

Abstract

An understanding of the reproduction and larval development of Antarctic krill is important since reproductive output is a key factor influencing their overall population size. Seasonal cycles of maturity in krill are known to be finely synchronized with seasonal cycles of food, sea-ice and the light regime in the Antarctic environment. This chapter will describe the progression of Antarctic krill development throughout their life cycle, including their maturation process, fecundity, spawning, and larval development, in relation to various environmental factors that are thought to govern these processes. The chapter will close with some remarks on possible effects of climate change on krill life history.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arrigo KR, van Dijken GL (2003) Phytoplankton dynamics within 37 Antarctic coastal polynya systems. J Geophys Res 108(C8):27

    Article  Google Scholar 

  • Atkinson A, Siegel V, Pakhomov E, Rothery P (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–103

    Article  CAS  Google Scholar 

  • Bargmann HE (1937) The reproductive system of Euphausia superba. Disc Rep 14:237–249

    Google Scholar 

  • Bargmann HE (1945) The development and life history of adolescent krill Euphausia superba. Disc Rep 23:103–176

    Google Scholar 

  • Brinton E, Townsend AW (1984) Regional relationships between development and growth in larvae of Antarctic krill, Euphausia superba, from field samples. J Crustacean Biol 4(Spec Issue 1):224–246

    Google Scholar 

  • Brinton E, Huntley M, Townsend AW (1986) Larvae of Euphausia superba in the Scotia Sea and Bransfield Strait in March 1984 – development and abundance compared with 1981 larvae. Polar Biol 5:221–234

    Article  Google Scholar 

  • Brown M (2005) Reproduction of Antarctic krill (Euphausia superba Dana) in the Indian Ocean sector: with special reference to ovary maturation. Honours thesis, University of Tasmania

    Google Scholar 

  • Brown M, Kawaguchi S, Candy S, Virtue P (2010) Temperature effects on the growth and maturation of Antarctic krill (Euphausia superba). Deep-Sea Res II 57:672–682

    Article  Google Scholar 

  • Brown M, Kawaguchi S, King R, Virtue P, Nicol S (2011) Flexible adaptation of the seasonal krill maturity cycle in the laboratory. J Plankton Res 33:821–826

    Article  Google Scholar 

  • Brown M, Kawaguchi S, Candy S, Yoshida T, Virtue P, Nicol S (2013) Long-term effect of photoperiod, temperature and feeding regimes on the respiration rates of Antarctic krill (Euphausia superba). Open Mar Sci 3:40–51

    Article  Google Scholar 

  • Charniaux-Cotton H, Payen G (1985) Sexual differentiation. In: Bliss DE, Mantel LH (eds) The biology of crustacean, vol 9. Academic, London, pp 217–299

    Google Scholar 

  • Clarke A (1980) The biochemical composition of krill Euphausia superba (Dana), from South Georgia. J Exp Mar Biol Ecol 43:221–236

    Article  CAS  Google Scholar 

  • Cook JM (2002) Sex determination in invertebrates. In: Hardy ICW (ed) Sex ratios: concepts and research methods. Cambridge University Press, Cambridge, pp 178–194

    Chapter  Google Scholar 

  • Cuzin-Roudy J (1987a) Gonad history of the Antarctic krill Euphausia superba Dana during its breeding season. Polar Biol 7:237–244

    Article  Google Scholar 

  • Cuzin-Roudy J (1987b) Sexual differentiation in the Antarctic krill Euphausia superba Dana (Crustacea: Euphausiacea). J Crustacean Biol 7:518–524

    Article  Google Scholar 

  • Cuzin-Roudy J (1993) Reproductive strategies of the Mediterranean krill, Meganyctiphanes norvegica and the Antarctic krill, Euphausia superba (Crustacea: Euphausiacea). Invertebr Reprod Dev 23:105–114

    Article  Google Scholar 

  • Cuzin-Roudy J (2000) Seasonal reproduction, multiple spawning, and fecundity in northern krill, Meganyctiphanes norvegica, and Antarctic krill, Euphausia superba. Can J Fish Aquat Sci 57(Suppl 3):6–15

    Article  Google Scholar 

  • Cuzin-Roudy J (2010) Reproduction in Northern krill (Meganyctiphanes norvegica Sars). Adv Mar Biol 57:199–230

    Article  Google Scholar 

  • Cuzin-Roudy J, Amsler MO (1991) Ovarian development and sexual maturity staging in Antarctic krill, Euphausia superba Dana (Euphausiacea). J Crustracean Biol 11:236–249

    Article  Google Scholar 

  • Cuzin-Roudy J, Labat JP (1992) Early summer distribution of Antarctic krill sexual development in the Scotia-Weddell region: a multivariate approach. Polar Biol 12:65–74

    Article  Google Scholar 

  • Daly KL (2004) Overwintering growth and development of larval Euphausia superba: an interannual comparison under varying environmental conditions west of the Antarctic Peninsula. Deep-Sea Res II 51:2139–2168

    Article  CAS  Google Scholar 

  • Denys CJ, McWhinnie MA (1982) Fecundity and ovarian cycles of the Antarctic krill Euphausia superba (Crustacea, Euphausiacea). Can J Zool 60:2414–2423

    Article  Google Scholar 

  • Feinberg LR, Shaw CT, Peterson WT (2006) Larval development of Euphausia pacifica in the laboratory: variability in developmental pathways. Mar Ecol Prog Ser 316:127–137

    Article  Google Scholar 

  • Flores H, Atkinson A, Kawaguchi S, Pakhomov E, Quetin L, Ross R, Hill S, Reiss C, Siegel V, Tarling G (2012) Impact of climate change on Antarctic krill. Mar Ecol Prog Ser 458:1–19

    Article  Google Scholar 

  • Fraser FC (1936) On the development of the young stages of krill (Euphausia superba). Discov Rep 14:1–192

    Article  Google Scholar 

  • Fritsen CH, Memmott J, Stewart FJ (2008) Inter-annual sea-ice dynamics and micro-algal biomass in winter pack ice of Marguerite Bay, Antarctica. Deep-Sea Res II 55:2059–2067

    Article  Google Scholar 

  • George RY (1984) Ontogenetic adaptation in growth and respiration of Euphausia superba in relation to temperature and pressure. J Crustacean Biol 4(Spec Issue 1):252–262

    Google Scholar 

  • George RY, Stromberg JO (1985) Development of eggs of Antarctic krill Euphausia superba in relation to pressure. Polar Biol 4:125–133

    Article  Google Scholar 

  • Groeneveld J, Johst K, Kawaguchi S, Meyer B, Teschke M, Grimm V (2015) How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model. Ecol Model 303:78–86

    Article  Google Scholar 

  • Hagen W, Van Vleet ESV, Kattner G (1996) Seasonal lipid storage as overwintering strategy of Antarctic krill. Mar Ecol Prog Ser 134:85–89

    Article  CAS  Google Scholar 

  • Hamner WM, Hamner PP, Obst BS, Carleton JH (1989) Field observation on the ontogeny of schooling of Euphausia superba furciliae and its relationship to ice in the Antarctic waters. Limnol Oceanogr 34:451–456

    Article  Google Scholar 

  • Hartnoll RG (2001) Growth in crustacean-twenty years on. Hydrobiologia 449:111–122

    Article  Google Scholar 

  • Hill SL, Phillips T, Atkinson A (2013) Potential climate change effects on the habitat of Antarctic Krill in the Weddell quadrant of the Southern Ocean. PlosOne 8, e72246

    Article  CAS  Google Scholar 

  • Hirano Y, Matsuda T (2003) Antarctic krill breeding facilities at Port of Nagoya public aquarium. Mar Fresh Behav Physiol 36:249–258

    Article  Google Scholar 

  • Hirano Y, Matsuda T, Kawaguchi S (2003) Breeding Antarctic krill in captivity. Mar Fresh Behav Physiol 36:259–269

    Article  Google Scholar 

  • Hosie GW (1991) Distribution and abundance of euphausiid larvae in the Prydz Bay region, Antarctica. Antarct Sci 3:167–180

    Google Scholar 

  • Huntley M, Nordhausen W, Lopez MDG (1994) Elemental composition, metabolic activity and growth of Antarctic krill Euphausia superba during winter. Mar Ecol Prog Ser 107:23–40

    Article  CAS  Google Scholar 

  • Ikeda T (1987) Mature Antarctic krill (Euphausia superba Dana) grown from eggs in the laboratory. J Plankton Res 9:565–569

    Article  Google Scholar 

  • Ikeda T, Dixon T (1982) Body shrinkage as a possible overwintering mechanism of the Antarctic krill, Euphausia superba Dana. J Exp Mar Biol Ecol 62:143–151

    Article  Google Scholar 

  • Jarman S, Deagle B (2016) Genetics of Antarctic krill. In: Siegel V (ed) Biology and ecology of Antarctic krill, Advances in polar biology. Springer, Cham, pp 247–278

    Google Scholar 

  • Jazdzewksi K, Dzik J, Porebski J, Rakusa-Suszczewski S, Witek Z, Wolnomiejski N (1978) Biological and populational studies on krill near South Shetland Islands, Scotia Sea and South Georgia in the summer 1976. Pol Arch Hydrobiol 25:607–631

    Google Scholar 

  • Jia ZN, Virtue P, Swadling KM, Kawaguchi S (2014) A photographic documentation of the development of Antarctic krill (Euphausia superba) from egg to early juvenile. Polar Biol 37:165–179

    Google Scholar 

  • Kawaguchi K, Ishikawa S, Matsuda O (1986) The overwintering strategy of Antarctic krill (Euphausia superba Dana) under the coastal fast ice of the Ongul Islands in Lützow-Holm Bay, Antarctica. Mem Nat Inst Polar Res Spec Iss 44:67–85

    Google Scholar 

  • Kawaguchi S, Yoshida T, Finley L, Cramp P, Nicol S (2007a) The krill maturity cycle: a conceptual model of the seasonal cycle in Antarctic krill. Polar Biol 30:689–698

    Article  Google Scholar 

  • Kawaguchi S, Finley LA, Jarman S, Candy SG, Ross RM, Quetin LB, Siegel V, Trivelpiece W, Naganobu M, Nicol S (2007b) Male krill grow fast and die young. Mar Ecol Prog Ser 345:199–210

    Article  Google Scholar 

  • Kawaguchi S, Nicol S, Press AJ (2009) Direct effects of climate change on the Antarctic krill fishery. Fish Manage Ecol 16:424–427

    Article  Google Scholar 

  • Kawaguchi S, King RA, Meijers R, Osborn JE, Swadling KM, Ritz DA, Nicol S (2010a) An experimental aquarium for observing the schooling behaviour of Antarctic krill. Deep-Sea Res II 57:683–692

    Article  Google Scholar 

  • Kawaguchi S, Nicol S, Virtue P, Davenport SR, Casper R, Swadling KM, Hosie GW (2010b) Krill demography and large scale distribution in the Western Indian Ocean sector of the Southern Ocean (CCAMLR Division 58.4.2) in Austral summer of 2006. Deep-Sea Res II 57:934–947

    Article  Google Scholar 

  • Kawaguchi S, Kilpatrick R, Roberts L, King RA, Nicol S (2011a) Ocean-bottom krill sex. J Plankton Res 33:1134–1138

    Article  Google Scholar 

  • Kawaguchi S, Kurihara H, King R, Hale L, Berli T, Robinson JP, Ishida A, Wakita M, Virtue P, Nicol S, Ishimatsu A (2011b) Will krill fare well under Southern Ocean acidification? Biol Lett 7:288–291

    Article  Google Scholar 

  • Kawaguchi S, Ishida A, King R, Raymond B, Waller N, Constable A, Nicol S, Wakita M, Ishimatsu A (2013) Risk maps for Antarctic krill under projected Southern Ocean acidification. Nat Clim Chang 7:843–847

    Article  CAS  Google Scholar 

  • Kirkwood JM (1982) A guide to the Euphausiacea of the Southern Ocean. ANARE Res Notes 1:1–45

    Google Scholar 

  • Loeb VJ, Hofmann EE, Klinck JM, Holm-Hansen O, White WB (2009) ENSO and variability of the Antarctic Peninsula pelagic marine ecosystem. Antarct Sci 21:135–148

    Article  Google Scholar 

  • Lowe AT, Ross RM, Quetin LB, Vernet M, Fritsen CH (2012) Simulating larval Antarctic krill growth and condition factor during fall and winter in response to environmental variability. Mar Ecol Prog Ser 452:27–43

    Article  Google Scholar 

  • Makarov RR (1975) A study of the second maturation of euphausiid (Eucarida, Euphausiacea) females (in Russian). Zoologicheskiy Zh 54(5):670–681

    Google Scholar 

  • Makarov RR, Denys C (1981) Stages of sexual maturity of Euphausia superba Dana. BIOMASS Handb 11:11

    Google Scholar 

  • Marr JWS (1962) The natural history and geography of the Antarctic krill (Euphausia superba Dana). Discov Rep 32:33–464

    Google Scholar 

  • Mayzaud P, Alvessard E, Cuzin-Roudy J (1998) Changes in lipid composition of the Antarctic krill Euphausia superba in the Indian sector of the Antarctic Ocean: influence of geographical location, sexual maturity stages and distribution among organs. Mar Ecol Prog Ser 173:149–162

    Article  CAS  Google Scholar 

  • Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32, L19604

    Google Scholar 

  • Meyer B (2012) The overwintering of Antarctic krill, Euphausia superba, from an ecophysiological perspective. Polar Biol 35:15–37

    Article  Google Scholar 

  • Meyer B, Teschke M (2016) Physiology of Euphausia superba. In: Siegel V (ed) Biology and ecology of Antarctic krill, Advances in polar biology. Springer, Cham, pp 145–174

    Google Scholar 

  • Meyer B, Fuentes V, Guerra C, Schmidt K, Atkinson A, Spahic S, Cisewski B, Freier U, Olariaga A, Bathmann U (2009) Physiology, growth and development of larval krill Euphausia superba in autumn and winter in the Lazarev Sea, Antarctica. Limnol Oceanogr 54:1595–1614

    Article  CAS  Google Scholar 

  • Naumov AG (1962) Biological state of aggregations of Euphausia superba Dana found near the Balleny Islands. Inf Byull Sov Antarkt Eksped 4:277–280

    Google Scholar 

  • Nicol S, de la Mare WK, Stolp M (1995) The energetic cost of egg production in Antarctic krill (Euphausia superba Dana). Antarct Sci 7:25–30

    Article  Google Scholar 

  • Poleck TP, Denys CJ (1982) Effect of temperature on the molting, growth and maturation of the Antarctic krill Euphausia superba (Crustacea: Euphausiacea) under laboratory conditions. Mar Biol 70:255–265

    Article  Google Scholar 

  • Quetin LB, Ross RM (1984a) School composition of the Antarctic krill Euphausia superba in the austral summer of 1982. J Crustacean Biol 4(Spec Issue 1):96–106

    Google Scholar 

  • Quetin LB, Ross RM (1984b) Depth distribution of developing Euphausia superba embryos, predicted from sinking rates. Mar Biol 79:47–53

    Article  Google Scholar 

  • Quetin LB, Ross RM (1985) The effect of pressure on the sinking rates of the embryos of the Antarctic krill, Euphausia superba. Deep-Sea Res 32(7):799–807

    Article  Google Scholar 

  • Quetin LB, Ross RM (1989) Effects of oxygen, temperature and age on the metabolic rate of the embryos and early larval stage of the Antarctic krill Euphausia superba Dana. J Exp Mar Biol Ecol 133:103–127

    Article  Google Scholar 

  • Quetin LB, Ross RM (2001) Environmental variability and its impact on the reproductive cycle of Antarctic krill. Am Zool 41:74–89

    Google Scholar 

  • Quetin LB, Ross RM (2003) Episodic recruitment in Antarctic krill Euphausia superba in the Palmer LTER study region. Mar Ecol Prog Ser 259:185–200

    Article  Google Scholar 

  • Quetin LB, Ross RM, Rristen CH, Vernet M (2007) Ecological responses of Antarctic krill to environmental variability: can we predict the future? Antarct Sci 19:253–266

    Article  Google Scholar 

  • Reiss CS (2016) Age, growth, mortality, and recruitment of Antarctic Krill, Euphausia superba. In: Siegel V (ed) Biology and ecology of Antarctic krill, Advances in polar biology. Springer, Cham, pp 101–144

    Google Scholar 

  • Ross RM, Quetin LB (1983) Spawning frequency and fecundity of the Antarctic krill Euphausia superba. Mar Biol 77:201–205

    Article  Google Scholar 

  • Ross RM, Quetin LB (1989) Ecology and physiology of larval euphausiids, Euphausia superba (Euphausiacea). Mem Queensl Mus 31:321–333

    Google Scholar 

  • Ross RM, Quetin LB (1991) Ecological physiology of larval euphausiids, Euphausia superba (Euphausiacea). Mem Queensl Mus 31:321–333

    Google Scholar 

  • Ross RM, Quetin LB (2000) Reproduction in euphausiacea. In: Everson I (ed) Krill biology, ecology and fisheries, fish and aquatic resources, vol 6. Blackwell Science, London, pp 150–181

    Google Scholar 

  • Ross RM, Quetin LB, Kirch E (1988) Effect of temperature on development times and survival of early larval stages of Euphausia superba Dana. J Exp Mar Biol Ecol 121:55–71

    Article  Google Scholar 

  • Ross RM, Quetin LB, Newberger T, Oakes SA (2004) Growth and behavior of larval krill (Euphausia superba) under the ice in late winter 2001 west of the Antarctic Peninsula. Deep-Sea Res II 51:2169–2184

    Article  Google Scholar 

  • Ross R, Quetin LB, Newberger T, Shaw CT, Jones JL, Oakes SA, Moore KJ (2014) Trends, cycles, interannual variability for three pelagic species west of the Antarctic Peninsula 1993–2008. Mar Ecol Prog Ser 515:11–32

    Article  Google Scholar 

  • Saba GK, Schofield O, Torres JJ, Ombres EH, Steinberg DK (2012) Increased feeding and nutrient excretion of adult Antarctic krill, Euphausia superba, exposed to enhanced carbon dioxide (CO2). PLoS One 7, e52224

    Article  CAS  Google Scholar 

  • Saba GK, Fraser WR, Saba VS et al (2014) Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nat Commun 5:4318

    CAS  Google Scholar 

  • Schwarz JN, Raymond B, Williams GD, Pasquer B, Marsland SJ, Gorton RJ (2010) Biophysical coupling in remotely-sensed wind stress, sea surface temperature, sea ice and chlorophyll concentrations in the South Indian Ocean. Deep-Sea Res II 57:701–722

    Article  CAS  Google Scholar 

  • Seear P, Tarling GA, Teschke M, Meyer B, Thorne MAS, Clark MS, Gaten E, Rosato E (2009) Effects of simulated light regimes on gene expression in Antarctic krill (Euphausia superba Dana). J Exp Mar Biol Ecol 381:57–64

    Article  CAS  Google Scholar 

  • Siegel V (1985) On the fecundity of Antarctic krill, Euphausia superba (Euphausiacea). Arch FischWiss 36:185–193

    Google Scholar 

  • Siegel V (1986) Structure and composition of the Antarctic krill stock in the Bransfield Straight (Antarctic Peninsula) during the Second International BIOMASS Experiment (SIBEX). Arch Fisch 37:51–72

    Google Scholar 

  • Siegel V (1988) A concept of seasonal variation of krill (Euphausia superba) distribution and abundance west of the Antarctic Peninsula. In: Sahrhage D (ed) Antarctic ocean and resources variability. Springer, Berlin, pp 219–230

    Chapter  Google Scholar 

  • Siegel V (1989) Winter and spring distribution and status of the krill stock in Antarctic Peninsula waters. Arch Fisch 39:45–72

    Google Scholar 

  • Siegel (2012) Krill stocks in high latitudes of the Antarctic Lazarev Sea: seasonal and interannual variation in distribution, abundance and demography. Polar Biol 35:1151–1177

    Article  Google Scholar 

  • Siegel V (2016) Introducing Antarctic krill Euphausia superba Dana, 1850. In: Siegel V (ed) Biology and ecology of Antarctic krill, advances in Polar ecology. Springer, Cham, pp 1–20

    Google Scholar 

  • Siegel V, Loeb V (1994) Length and age at maturity of Antarctic krill. Antarct Sci 6:479–482

    Article  Google Scholar 

  • Siegel V, Loeb V (1995) Recruitment of Antarctic krill Euphausia superba and possible causes for its variability. Mar Ecol Prog Ser 123:45–56

    Article  Google Scholar 

  • Siegel V, Watkins JL (2016) Distribution, biomass and demography of Antarctic krill, Euphausia superba. In: Siegel V (ed) Biology and ecology of Antarctic krill, advances in Polar ecology. Springer, Cham, pp 21–100

    Google Scholar 

  • Smith RC, Dierssen H, Vernet M (1996) Phytoplankton biomass and productivity in the western Antarctic Peninsula region. In: Ross RM, Hofmann EE, Quetin LB (eds) Foundations for ecological research west of the Antarctic Peninsula. American Geophysical Union, Washington, DC, pp 333–356

    Chapter  Google Scholar 

  • Spiridonov VA (1995) Spatial and temporal variability in reproductive timing of Antarctic krill (Euphausia superba Dana). Polar Biol 15:161–174

    Article  Google Scholar 

  • Stammerjohn SS, Massom RA, Rind D, Martinson DG (2012) Regions of rapid sea ice change: an inter-hemispheric seasonal comparison. Geophys Res Lett 39, L06501. doi:10.1029/2012GL050874

    Article  Google Scholar 

  • Steinberg DK, Ruck KE, Gleiber MR, Garzio LM, Cope JS, Bernard KS, Stammerjohn SE, Schofield OME, Quetin LB, Ross RM (2015) Long-term (1993–2013) changes in macrozooplankton off the western Antarctic Peninsula. Deep-Sea Res I 101:54–70

    Article  Google Scholar 

  • Tarling GA, Fielding S (2016) Swarming and behaviour in Antarctic krill. In: Siegel V (ed) Biology and ecology of Antarctic krill, advances in Polar ecology. Springer, Cham, pp 279–320

    Google Scholar 

  • Tarling GA, Cuzin-Roudy J, Thorpe SE, Shreeve RS RS, Ward P, Murphy EJ (2007) Recruitment of Antarctic krill Euphausia superba in the South Georgia region: adult fecundity and the fate of larvae. Mar Ecol Prog Ser 331:161–179

    Article  Google Scholar 

  • Tarling GA, Klevjer T, Fielding S, Watkins J, Atkinson A, Murphy E, Korb R, Whitehouse M, Leaper R (2009) Variability and predictability of Antarctic krill swarm structure. Deep-Sea Res I 56:1994–2012

    Article  Google Scholar 

  • Teschke M, Kawaguchi S, Meyer B (2007) Simulated light regimes affect feeding and metabolism of Antarctic krill, Euphausia superba. Limnol Oceanogr 52:1046–1054

    Article  Google Scholar 

  • Teschke M, Kawaguchi S, Meyer B (2008) Effects of simulated light regimes on maturity and body composition of Antarctic krill, Euphausia superba. Mar Biol 154:315–324

    Article  Google Scholar 

  • Thiriout-Quevereux C, Leiato A, Cuzin-Roudy J (1998) Chromosome diversity in Mediterranean and Antarctic euphausiid species (Euphausiacea). J Crustacean Biol 18:290–297

    Article  Google Scholar 

  • Thomas PG, Ikeda T (1987) Sexual regression, shrinkage, re-maturation and growth of spent female Euphausia superba in the laboratory. Mar Biol 95:357–363

    Article  Google Scholar 

  • Ventura T, Rosen O, Sagi A (2011) From the discovery of the crustacean androgenic gland to the insulin-like hormone in six decades. Gen Comp Endocrinol 173:381–388

    Article  CAS  Google Scholar 

  • Virtue P, Nichols PD, Nicol S, Hosie G (1996) Reproductive trade-off in male Antarctic krill, Euphausia superba. Mar Biol 126:521–527

    Article  CAS  Google Scholar 

  • Watkins JL, Buchholz F, Priddle J, Morris DJ, Ricketts C (1992) Variation in reproductive status of Antarctic krill swarms; evidence for a size related sorting mechanism? Mar Ecol Prog Ser 82:163–174

    Article  Google Scholar 

  • Yoshida T, Toda T, Hirano Y, Matsuda T, Kawaguchi S (2004) Effect of temperature on embryo development time and hatching success of the Antarctic krill Euphausia superba Dana in the laboratory. Mar Fresh Behav Physiol 37:137–145

    Article  Google Scholar 

  • Yoshida T, Virtue P, Kawaguchi S, Nichols PD (2011) Factors determining the hatching success of Antarctic krill Euphausia superba embryo: lipid and fatty acid composition. Mar Biol 158:2313–2325

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to So Kawaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kawaguchi, S. (2016). Reproduction and Larval Development in Antarctic Krill (Euphausia superba). In: Siegel, V. (eds) Biology and Ecology of Antarctic Krill. Advances in Polar Ecology. Springer, Cham. https://doi.org/10.1007/978-3-319-29279-3_6

Download citation

Publish with us

Policies and ethics