Skip to main content

Physiology of Euphausia superba

  • Chapter
  • First Online:
Biology and Ecology of Antarctic Krill

Part of the book series: Advances in Polar Ecology ((AVPE))

Abstract

Since the 1920s, E. superba is one of the best studied species in the Southern Ocean in terms of their general biology. The main driver for this research focus has been the fisheries’ requirements for stock forecasting and conservation measures. Nowadays this is joined by concerns over climate change effects and the requirement to take a more holistic view to understand food web structures. So far, however, we do not have a clear understanding of the physiological response of krill and hence their adaptability to cope with ongoing environmental changes, caused by the anthropogenic carbon emissions. This is due to the extreme lack of intense studies on krill physiology, especially of their larval stages in relation to their seasonal environment. A major aim of this book chapter is on the one hand to summarize how physiological functions such as lipid accumulation and utilisation, metabolic activity and growth change with ontogeny and season and to demonstrate which environmental factors are the main drivers for seasonal variability of these functions in adult and larval krill. On the other hand, we draw the attention to the importance of photoperiod (day length) as an entrainment cue for endogenous rhythms and clocks in the life cycle of krill. Furthermore, we give an overview of the current knowledge on the impact of elevated seawater temperature and ocean acidification on krill.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnold KH, Shreeve RS, Angus A, Clarke A (2004) Growth rates of Antarctic krill, Euphausia superba: comparison of the instantaneous growth rate method with nitrogen and phosphorus stoichiometry. Limnol Oceanogr 49:2152–2161

    Article  CAS  Google Scholar 

  • Asakura A (1992) Population ecology of the sand-dwelling hermit crab Diogenes nitidimanus Terao. 5. Ecological implications in the pattern of moulting. J Crust Biol 12:537–545

    Article  Google Scholar 

  • Atkinson A, Meyer B, Stübing D, Hagen W, Bathmann UV (2002) Feeding and energy budgets of Antarctic krill Euphausia superba at the onset of winter – II. Juveniles and adults. Limnol Oceanogr 47:953–966

    Article  Google Scholar 

  • Atkinson A, Siegel V, Pakhomov EA, Rothery P (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–103

    Article  CAS  Google Scholar 

  • Atkinson A, Shreeve RS, Hirst AG, Rothery P, Tarling GA, Pond DW, Korb RE, Murphy EJ, Watkins JL (2006) Natural growth rates in Antarctic krill (Euphausia superba): II: predictive models based on food, temperature, body length, sex, and maturity stage. Limnol Oceanogr 51:973–987

    Article  Google Scholar 

  • Auerswald L, Pape C, Stübing D, Lopata AL, Meyer B (2009) Effect of short-term starvation of adult Antarctic krill, Euphausia superba, at the onset of summer. J Exp Mar Biol Ecol 381:47–56

    Article  Google Scholar 

  • Brett JR, Groves TDD (1979) Physiological energetics. In: Hoar WS, Randall DJ, Brett JR (eds) Fish physiology 8. Academic, New York, pp 280–352

    Google Scholar 

  • Brown M, Kawaguchi S, Candy GS, Virtue P (2010) Temperature effects on the growth and maturation of Antarctic krill (Euphausia superba). Deep Sea Res Part 2 Top Stud Oceanogr 57:672–682

    Article  Google Scholar 

  • Brown M, Kawaguchi S, King R, Virtue P, Nicol S (2011) Flexible adaptation of the seasonal krill maturity cycle in the laboratory. J Plankton Res 33:821–826. doi:10.1093/plankt/fbq123

    Article  Google Scholar 

  • Brown M, Kawaguchi S, Candy S, Yoshida T, Virtue P, Nicol S (2013) Long-term effect of photoperiod, temperature and feeding regimes on the respiration rates of Antarctic krill (Euphausia superba) in the laboratory. Open J Mar Sci 3:40–51. doi:10.4236/ojms.2013.32A005

    Article  Google Scholar 

  • Buchholz F (1989) Moult cycle and seasonal activities of chitinolytic enzymes in the integument and digestive tract of the Antarctic krill, Euphausia superba. Polar Biol 9:311–317

    Article  Google Scholar 

  • Buchholz F (1991) Moult cycle and growth of Antarctic krill Euphausia superba in the laboratory. Mar Ecol Prog Ser 3:217–229

    Article  Google Scholar 

  • Buchholz F, Morris DJ, Watkins JL (1989) Analyses of field moult data: prediction of intermoult period and assessment of seasonal growth in Antarctic krill, Euphausia superba Dana. Antarct Sci 1:301–306

    Article  Google Scholar 

  • Clark MS, Thorne MA, Toullec JY, Meng Y, Guan LL, Peck LS, Moore S (2011) Antarctic krill 454 pyrosequencing reveals chaperone and stress transcriptome. PLoS One 6:e15919. doi:10.1371/journal.pone.0015919

    Article  CAS  Google Scholar 

  • Clarke A, Morris DJ (1983) Towards an energy budget for krill: the physiology and biochemistry of Euphausia superba Dana. Polar Biol 2:69–86

    Article  Google Scholar 

  • Cockcroft AC, Goosen PC (1995) Shrinkage at moulting in the rock lobster Jasus Lalandii and the associated changes in the reproductive parameters. S Afr J Mar Sci 16:195–203

    Article  Google Scholar 

  • Cuzin-Roudy J, Labat JP (1992) Early summer distribution of Antarctic krill sexual development in the Scotia-Weddell region: a multivariate approach. Polar Biol 12:65–74

    Article  Google Scholar 

  • Daly KL (1990) Overwintering development, growth, and feeding of larval Euphausia superba in the Antarctic marginal ice zone. Limnol Oceanogr 35:1564–1576

    Article  Google Scholar 

  • Daly KL (2004) Overwintering growth and development of larval Euphausia superba an interannual comparison under varying environmental conditions west of the Antarctic Peninsula. Deep Sea Res II 51:2139–2168

    Article  CAS  Google Scholar 

  • Daly KL, Macaulay MC (1988) Abundance and distribution of krill in the ice edge zone of the Weddell Sea, austral spring 1983. Deep Sea Res 35:21–41

    Article  Google Scholar 

  • Daly KL, Macaulay MC (1991) Influence of physical and biological mesoscale dynamics on the seasonal distribution and behaviour of Euphausia superba in the Antarctic marginal ice zone. Mar Ecol Prog Ser 79:37–66

    Article  Google Scholar 

  • De Pittà C, Bertolucci C, Mazzotta GM, Bernante F, Rizzo G, De Nardi B, Pallavicini A, Lanfranchi G, Costa R (2008) Systematic sequencing of mRNA from the Antarctic krill (Euphausia superba) and first tissue specific transcriptional signature. BMC Genomics 28:9–45

    Google Scholar 

  • De Pitta’ C, Biscontin A, Albiero A et al (2013) The Antarctic krill euphausia superba shows diurnal cycles of transcription under natural conditions. PLoS ONE 8(7):e68652. doi:10.1371/journal.pone.0068652

    Article  CAS  Google Scholar 

  • Deibel D, Daly KL (2007) Zooplankton of the southern ocean. In: Smith WO, Barber DG (eds) Zooplankton processes in Arctic and Antarctic Polynyas, chapter 9. Elsevier oceanography series 74. Elsevier BV, pp 287–322. doi:10.1016/S0422-9894(06)74009-0

    Google Scholar 

  • Ettershank G (1983) Age structure and cyclical annual size change in the Antarctic krill, Euphausia superba Dana. Polar Biol 2:189–193

    Article  Google Scholar 

  • Fach BA, Meyer B, Wolf-Gladrow D, Bathmann U (2008) Biochemically base modelling study of Antarctic krill Euphausia superba growth and development. Mar Ecol Prog Ser 360:147–161

    Article  Google Scholar 

  • Frazer TK, Quetin LB, Ross RM (1997) Abundance and distribution of larval krill, Euphausia superba, associated with annual sea ice in winter. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, pp 107–111

    Google Scholar 

  • Frazer TK, Quetin LB, Ross RM (2002) Energetic demands of larval krill, Euphausia superba, in winter. J Exp Mar Biol Ecol 277:157–171

    Article  Google Scholar 

  • Gaten E, Tarling G, Dowse H et al (2008) Is vertical migration in Antarctic krill (Euphausia superba) influenced by an underlying circadian rhythm? J Genet 5:473–483

    Article  Google Scholar 

  • Godlewska M (1996) Vertical migrations of krill (Euphausia superba Dana). Pol Arch Hydrobiol 43:9–63

    Google Scholar 

  • Groeneveld J, Johst K, Kawaguchi S, Meyer B, Teschke M, Grimm V (2015) How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model. Ecol Model 303:78–86

    Article  Google Scholar 

  • Guyselmann JB (1953) An analysis of the moulting process in the fiddler crab, Uca pugilator. Biol Bull Mar Boil Lab Woods Hole 104:115–137

    Article  Google Scholar 

  • Hagen W, Kattner G, Terbrüggen A, Van Vleet ES (2001) Lipid metabolism of the Antarctic krill Euphausia superba and its ecological implications. Mar Biol 139:95–104

    Article  CAS  Google Scholar 

  • Hamner WM, Hamner PP, Strand SW, Gilmer RW (1983) Behaviour of Antarctic krill Euphausia superba: chemoreception, feeding schooling, moulting. Science 220:433–435

    Article  CAS  Google Scholar 

  • Helm B, Ben-Shlomo R, Sheriff MJ, Hut RA, Foster R, Barnes BM, Dominoni D (2013) Annual rhythms that underlie phenology: biological time-keeping meets environmental change. Proc R Soc B 280:20130016, http://dx.doi.org/10.1098/rspb.2013.0016

    Article  Google Scholar 

  • Hempel I (1981) Euphausiid larvae in the Scotia Sea and adjacent waters in summer 1977/1978. Meeresforsch 29:53–59

    Google Scholar 

  • Hempel I, Hempel G (1978) Larval krill (Euphausia superba) in the plankton and neuston samples of the German Antarctic Expedition 1975/1976. Meeresforsch 26:206–216

    Google Scholar 

  • Hempel I, Hempel G (1982) Distribution of euphausiid larvae in the southern Weddell Sea. Meeresforsch 29:253–266

    Google Scholar 

  • Hill SL, Phillips T, Atkinson A (2013) Potential climate change effects on the habitat of Antarctic krill in the Weddell quadrant of the southern ocean. PLoS One 8:e72246

    Article  CAS  Google Scholar 

  • Hirche H (1984) Temperature and metabolism of plankton—I. Respiration of Antarctic zooplankton at different temperatures with a comparison of Antarctic and nordic krill. Comp Biochem Physiol A Physiol 77:361–368. doi:10.1016/0300-9629(84)90074-4

    Article  Google Scholar 

  • Hoffmann EE, Lascara CM (2000) Modeling the growth dynamics of Antarctic krill Euphausia superba. Mar Ecol Prog Ser 194:219–231

    Article  Google Scholar 

  • Hopkins PM (1985) Regeneration and relative growth in the fiddler crab. In: Crustacean. Issues 3

    Google Scholar 

  • Hosie GW, Ritz DA (1989) Body shrinkage in the sub-tropical euphausiid Nyctiphanes australis GO Sars. J Plankt Res 11:595–598

    Article  Google Scholar 

  • Hubold G, Hempel I (1987) Seasonal variability of zooplankton in the Southern Weddell Sea. Meeresforsch 31:185–192

    Google Scholar 

  • Huntley M, Brinton E (1991) Mesoscale variation in growth and early development of Euphausia superba Dana in the western Bransfield Strait region. Deep Sea Res 38:1213–1240

    Article  Google Scholar 

  • Huntley M, Nordhausen W, Lopez MDG (1994) Elemental composition, metabolic activity and growth of Antarctic krill Euphausia superba during winter. Mar Ecol Prog Ser 107:23–40

    Article  CAS  Google Scholar 

  • Ikeda T (1974) Nutritional ecology of marine zooplankton. Mem Fac Fish Hokkaido Univ 22:1–97

    Google Scholar 

  • Ikeda T (1981) Metabolic activity of larval stages of Antarctic krill. Antarct J US 16:161–162

    Google Scholar 

  • Ikeda T (1984) Development of the larvae of the Antarctic krill (Euphausia superba Dana) observed in the laboratory. J Exp Mar Biol Ecol 75:107–117

    Article  Google Scholar 

  • Ikeda T (1985) Metabolic rate and elemental composition (C and N) of embryos and non-feeding early larval stages of (Euphausia superba Dana). J Exp Mar Biol Ecol 90:119–127

    Article  CAS  Google Scholar 

  • Ikeda T, Dixon T (1982) Body shrinkage as a possible overwintering mechanism of the Antarctic krill, Euphausia superba Dana. J Exp Mar Biol Ecol 62:143–151

    Article  Google Scholar 

  • Ikeda T, Mitchell AW (1982) Oxygen uptake, ammonia excretion and phosphate excretion by krill and other Antarctic zooplankton in relation to their body size and chemical composition. Mar Biol 71:283–298

    Article  Google Scholar 

  • Ikeda T, Thomas PG (1987) Longevity of the Antarctic krill (Euphausia superba Dana) based on a laboratory experiment. Proc NIPR Symp Polar Biol 1:56–62

    Google Scholar 

  • Ikeda T, Torres JJ, Hernandez-Leon S, Geiger SP (2000) Metabolism. In: Harris RP, Wiebe PH, Lenz J, Skjoldal HR, Huntley M (eds) ICES zooplankton methodology manual. Academic, London, pp 455–532

    Chapter  Google Scholar 

  • Ishii H, Omori M, Maeda M, Watanabe Y (1987) Metabolic rates and elemental composition of Antarctic krill Euphausia superba Dana. Polar Biol 7:379–382

    Article  CAS  Google Scholar 

  • Kawaguchi K, Ishikawa S, Matsuda O (1986) The overwintering strategy of Antarctic krill (Euphausia superba Dana) under the coastal fast ice off the Ongul Islands in Lützow-Holm Bay, Antarctica. Mem Nat Inst Polar Res Spec Iss 44:67–85

    Google Scholar 

  • Kawaguchi S, Yoshida T, Finley L, Cramp P, Nicol S (2006) The krill maturity cycle: a conceptual model of the seasonal cycle in Antarctic krill. Polar Biol 30:689–698. doi:10.1007/s00300-006-0226-2

    Article  Google Scholar 

  • Kawaguchi S, Kilpatrick R, Roberts L, King R, Nicol S (2011) Ocean-bottom krill sex. J Plank Res 33:1134–1138. doi:10.1093/plankt/fbr006

    Article  Google Scholar 

  • Kawaguchi S, Ishida A, King R et al (2013) Risk maps for Antarctic krill under projected Southern Ocean acidification. Nat Clim Chang 3:843–847. doi:10.1038/NCLIMATE1937

    Article  CAS  Google Scholar 

  • Lancraft TM, Hopkins TL, Torres JJ, Donelly J (1991) Oceanic micronektonic/macrozooplanktonic community structure and feeding in ice covered Antarctic waters during winter (AMERIEZ 1988). Polar Biol 11:157–167

    Article  Google Scholar 

  • Lasker R (1966) Feeding growth, respiration and carbon utilization of a euphausiid crustacean. J Fish Res Bd Can 23:1291–1317

    Article  Google Scholar 

  • Lindberg RG (1955) Growth, population dynamic, and field behaviour in the spiny lobster, Panulirus interruptus (Randall). Univ Calif Publs Zool 59:157–231

    Google Scholar 

  • Little EJ (1972) Tagging of spiny lobster (Panulirus argus) in the Florida Keys, 1967–1969. Spec Sci Rep Fla Dept Nat Resour Mar Res Lab 31:1–23

    Google Scholar 

  • Lloyd AJ, Yonge CM (1947) The biology of Crangon L. in the Bristol Channel and Severn Estuary. Mar Biol Ass UK 26:626–661

    Article  CAS  Google Scholar 

  • Loeb V, Siegel V, Holm-Hansen O, Hewitt R, Fraser W, Trivelpiece W, Trivelpiece S (1997) Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387:897–900

    Article  CAS  Google Scholar 

  • Mackintosh NA (1972) Life cycle of Antarctic krill in relation to ice and water conditions. Discov Rep 36:1–94

    Google Scholar 

  • Makarov RR, Maslennikov VV (1992) Larvae of euphausiids off Queen Maud Land. Polar Biol 11:515–523

    Article  Google Scholar 

  • Makarov RR, Sysoyeva MV (1985) Biology and distribution of Euphausia superba in the Lazarev sea and adjacent waters. In: Legkaya i pishevaya promyshlennost (ed) Antarktichestkiy Kril Osobennosti raspredeleniya I Sreda, Moscow, pp 110–116

    Google Scholar 

  • Marschall HP (1988) The overwintering strategy of Antarctic krill under pack-ice of the Weddell Sea. Polar Biol 9:245–250

    Article  Google Scholar 

  • Marshall N (1945) The moulting without growth of spiny lobsters Panurilus argus kept in a live car. Trans Am Sish Soc 75:267–269

    Article  Google Scholar 

  • Mayzaud P, Albessard E, Virtue P, Boutoute M (2000) Environmental constraints on the lipid composition and metabolism of euphausiids: the case of Euphausia superba and Meganyctiphanes norvegica. Can J Fish Aquat Sci 57:91–103

    Article  CAS  Google Scholar 

  • Mazzotta GM, De Pittà C, Benna C, Tosatto SCE, Lanfranchi G, Bertolucci C, Costa R (2010) A cry from the Krill. Chronobiology 27:425–445

    Article  CAS  Google Scholar 

  • McWhinnie MA, Marciniak P (1964) Temperature responses and tissue respiration in Antarctic crustacea with particular reference to the krill Euphausia superba. In: Biology of the Antarctic seas. American Geophysical Union, Wiley, pp 63–72. doi: 10.1029/AR001p0063

    Google Scholar 

  • Melnikov IA, Spiridonov VA (1996) Antarctic krill under perennial sea ice in the western Weddell Sea. Antarct Sci 8:323–329

    Article  Google Scholar 

  • Menshenina L (1992) Distribution of Euphausiid larvae in the Weddell Gyre in September–October 1989. Polar Biol 5:44–54

    Google Scholar 

  • Meyer B (2012) The overwintering of Antarctic krill, Euphausia superba, from an ecophysiological perspective, – a review. Polar Biol 35:15–37

    Article  Google Scholar 

  • Meyer B, Oettl B (2005) Effects of short-term starvation on composition and metabolism of larval Antarctic krill, Euphausia superba. Mar Ecol Prog Ser 292:263–270

    Article  CAS  Google Scholar 

  • Meyer B, Atkinson A, Stübing D, Oettl B, Hagen W, Bathmann UV (2002a) Feeding and energy budgets of Antarctic krill Euphausia superba at the onset of winter — I. Furcilia III larvae. Limnol Oceanogr 47:943–952

    Article  Google Scholar 

  • Meyer B, Saborowski R, Atkinson A, Buchholz F, Bathmann U (2002b) Seasonal differences in citrate synthase and digestive activity in larval and postlarval Antarctic krill, Euphausia superba. Mar Biol 141:855–862

    Article  CAS  Google Scholar 

  • Meyer B, Atkinson A, Blume B, Bathmann UV (2003) Feeding and energy budgets of larval Antarctic krill, Euphausia superba, in summer. Mar Ecol Prog Ser 257:167–178

    Article  Google Scholar 

  • Meyer B, Fuentes V, Guerra C, Schmidt K, Atkinson A, Spahic S, Cisewski B, Freier U, Olariaga A, Bathmann U (2009) Physiology, growth and development of larval krill Euphausia superba in autumn and winter in the Lazarev Sea, Antarctica. Limnol Oceanogr 54:1595–1614

    Article  CAS  Google Scholar 

  • Meyer B, Auerswald L, Siegel V, Spahic S, Pape C, Fach B, Teschke M, Lopata A, Fuentes V (2010) Seasonal variation in body composition, metabolic activity, feeding, and growth of adult krill Euphausia superba in the Lazarev Sea. Mar Ecol Prog Ser 398:1–18

    Article  CAS  Google Scholar 

  • Meyer B, Martini P, Biscontin A et al (2015) Pyrosequencing and de novo assembly of Antarctic krill (Euphausia superba) transcriptome to study of the adaptability of krill to climate induced environmental changes. Mol Ecol Resour 15:1460–1471. doi:10.1111/1755-0998.12408

    Article  CAS  Google Scholar 

  • Miller DGM, Hampton I (1989) Biology and ecology of the Antarctic krill (Euphausia superba Dana): a review. Biol Investig Mar Antarct Syst Sticks (BIOMASS) Sci Ser 9:63–85

    Google Scholar 

  • Morris DJ, Priddle (1984) Observations on the feeding and moulting of the Antarctic Krill, Euphausia superba Dana, in winter. Br Antarct Surv Bull 65:57–63

    Google Scholar 

  • Nicol S, Stolp M, Cochran T, Geijsel T, Marshall J (1992) Growth and shrinkage of Antarctic krill, Euphausia superba, from the Indian Ocean sector of the Southern Ocean during summer. Mar Ecol Prog Ser 89:175–181

    Article  Google Scholar 

  • Nicol S, Kitchener J, King R, Hosie G, de la Mare WK (2000) Population structure and condition of Antarctic krill (Euphausia superba) off east Antarctica (80–150°E) during the Austral summer of 1995/1996. Deep-Sea Res Part II 47:2489–2517

    Article  Google Scholar 

  • Nicol S, Virtue P, King R, Davenport SR, McGaffin AF, Nichols P (2004) Condition of Euphausia crystallorophias off East Antarctica in winter in comparison to other seasons. Deep-Sea Res II 51:2215–2224

    Article  CAS  Google Scholar 

  • Nishino Y, Kawamura A (1994) Winter gut contents of Antarctic krill (Euphausia superba Dana) collected in the South Georgia area. Proc NIPR Symp Polar Biol 7:82–90

    Google Scholar 

  • Omori M, Ikeda T (1984) Methods in marine zooplankton ecology. Wiley, New York, 332 pp

    Google Scholar 

  • Opaliński KW (1991) Respiratory metabolism and metabolic 632 adaptations of Antarctic krill Euphausia superba. Pol Arch Hydrobiol 38:183–263

    Google Scholar 

  • Opaliński KW, Klekowski RZ, Kidawa A (1993) Respiratory metabolism of Euphausia superba: effect of temperature. the second Polish-Soviet Antarctic symposium, pp 183–189

    Google Scholar 

  • Oster H, Maronde E, Albrecht U (2002) The circadian clock as a molecular calendar. Chronobiol Int 19:507–516

    Article  CAS  Google Scholar 

  • Pakhomov EA, Atkinson A, Meyer B, Oettl B, Bathmann U (2004) Daily rations and growth of larval krill Euphausia superba in the Eastern Bellingshausen Sea during austral autumn. Deep-Sea Res II 51:2185–2198

    Article  CAS  Google Scholar 

  • Peck LS, Morley SA, Clark MS (2010) Poor acclimation capacities in Antarctic marine ectotherms. Mar Biol 157:2051–2059

    Article  Google Scholar 

  • Pörtner H-O, Farrell A (2008) Physiology and climate change. Science 322:690–692

    Article  Google Scholar 

  • Quetin LB, Ross RM (1991) Behavioural and physiological characteristics of the Antarctic krill, Euphausia superba. Am Zool 31:49–63

    Article  Google Scholar 

  • Quetin LB, Ross RM, Clarke A (1994) Krill energetics: seasonal and environmental aspects of the physiology of Euphausia superba. In: El-Sayed SZ (ed) Southern ocean ecology: the BIOMASS perspective. Cambridge University Press, Cambridge, pp 165–184

    Google Scholar 

  • Quetin LB, Ross RM, Frazer TK, Habermann KL (1996) Factors affecting distribution and abundance of zooplankton, with an emphasis on Antarctic krill, Euphausia superba. Ant Res Ser 70:357–371

    Article  Google Scholar 

  • Quetin LB, Ross RM, Frazer TK, Amsler MO, Wyatt-Evens C, Oakes SA (2003) Growth of larval krill, Euphausia superba, in fall and winter west of the Antarctic Peninsula. Mar Biol 143:833–843

    Article  Google Scholar 

  • Quetin LB, Ross RM, Fritsen CH, Vernet M (2007) Ecological responses of Antarctic krill to environmental variability: can we predict the future? Antarct Sci 19:253–266

    Article  Google Scholar 

  • Rakusa-Suszczewski S, Opaliński KW (1978) Oxygen consumption in Euphausia superba. Polskie Archiwum Hydrobiologii 25:633–641

    Google Scholar 

  • Reiss CS (2016) Age, growth, mortality, and recruitment of Antarctic Krill, Euphausia superba. In: Siegel V (ed) The biology and ecology of Antarctic krill, Euphausia superba Dana, 1850. Springer, Cham, pp 101–144

    Google Scholar 

  • Ross RM, Quetin LB (1991) Ecological physiology of larval euphausiids, Euphausia superba (Euphausiaceae). Mem Queensl Mus 31:321–333

    Google Scholar 

  • Ross RM, Quetin LB, Baker KS, Vernet M, Smith RS (2000) Growth limitation in young Euphausia superba under field conditions. Limnol Oceanogr 45:31–43

    Article  Google Scholar 

  • Ross RM, Quetin LB, Newberger T, Oakes SA (2004) Growth and behaviour of larval krill (Euphausia superba) under the ice in late winter 2001 west of the Antarctic Peninsula. Deep Sea Res II 51:2169–2184

    Article  Google Scholar 

  • Saether O, Ellingsen TE, Mohr V (1985) Lipids of North Atlantic krill. J Lipid Res 27:274–285

    Google Scholar 

  • Salonen K, Sarvala J, Hakala I, Viljanen M-L (1976) The relation of energy and organic carbon in aquatic invertebrates. Limnol Oceanogr 21:724–730

    Article  CAS  Google Scholar 

  • Schmidt K, Atkinson A (2016) Feeding and food processing in Antarctic krill (Euphausia superba Dana). In: Siegel V (ed) The biology and ecology of Antarctic krill, Euphausia superba Dana, 1850. Springer, Cham, pp 175–224

    Google Scholar 

  • Schmidt K, Atkinson A, Venables H, Pond DW (2012) Early spawning of Antarctic krill in the Scotia Sea is fuelled by ‘superfluous’ feeding on non-ice associated phytoplankton blooms. Deep Sea Res II 59:159–172

    Article  Google Scholar 

  • Schmidt K, Atkinson, Pond DW, Ireland LC (2014) Feeding and overwintering of Antarctic krill across its major habitats: the role of sea ice cover, water depth, and phytoplankton abundance. Limnol Oceanogr 59:17–36

    Article  Google Scholar 

  • Schultz TF, Kay SA (2003) Circadian clocks in daily and seasonal control of development. Science 301:326–328

    Article  CAS  Google Scholar 

  • Seear PJ, Geraint AT, Teschke M, Meyer B, Thorne MAS, Clark MS, Gaten E, Rosato E (2009) Effects of simulated light regimes on gene expression in Antarctic krill (Euphausia superba Dana). J Exp Mar Biol Ecol 381:57–64

    Article  CAS  Google Scholar 

  • Seear PJ, Tarling GA, Burns G, Goodall-Copestake WP, Gaten E, Ozkaya O, Rosato E (2010) Differential gene expression during the moult cycle of Antarctic krill (Euphausia superba). BMC Genomics 11:582

    Article  CAS  Google Scholar 

  • Seear PJ, Goodall-Copestake WP, Fleming AH, Rosato E, Tarling GA (2012) Seasonal and spatial influences on gene expression in Antarctic krill Euphausia superba. Mar Ecol Prog Ser 467:61–75

    Article  CAS  Google Scholar 

  • Siegel V (1987) Age and growth of Antarctic Euphausiaceae (Crustacea) under natural conditions. Mar Biol 96:483–495

    Article  Google Scholar 

  • Siegel V (2005) Distribution and population dynamics of Euphausia superba: summary of recent findings. Polar Biol 29:1–22

    Article  Google Scholar 

  • Siegel V, Loeb V (1995) Recruitment of Antarctic krill Euphausia superba and possible causes for its variability. Mar Ecol Prog Ser 123:45–56

    Article  Google Scholar 

  • Siegel V, Watkins J (2016) Distribution, biomass and demography of Antarctic Krill, Euphausia superba. In: Siegel V (ed) The biology and ecology of Antarctic krill, Euphausia superba Dana, 1850. Springer, Cham, pp 21–100

    Google Scholar 

  • Siegel V, Skibowski PA, Harm U (1992) Community structure of the epipelagic zooplankton community under the sea-ice of the northern Weddell Sea. Polar Biol 12:15–24

    Article  Google Scholar 

  • Skinner DM (1985) Moulting and regeneration. In: Bliss DE, Mantel LH (eds) The biology of crustacea. 9. Integument, pigments, and hormonal processes. Academic, New York, pp 43–146

    Chapter  Google Scholar 

  • Spiridonov VA (1992) Distribution and biological properties of the Antarctic krill Euphausia superba Dana during winter Weddell Gyre study (WWGS) 1989. Proc NIPR Symp Polar Biol 5:55–64

    Google Scholar 

  • Stepnik R (1982) All-year population studies of Euphausiaceae (Crustacea) in the Admiralty Bay (King George Island, South Shetland Island Antarctica). Pol Polar Res 3:49–68

    Google Scholar 

  • Sweat DE (1968) Growth and tagging studies on Panulirus argus (Latreille) in the Florida Keys. Tech Ser Fla St Bd Conserv 57:30

    Google Scholar 

  • Tarling G, Shreeve RS, Hirst AG, Atkinson A, Pond DW, Murphy EJ, Watkins JL (2006) Natural growth rates in Antarctic krill (Euphausia superba): I. Improving methodology and predicting intermoult period. Limnol Oceanogr 51:959–972

    Article  Google Scholar 

  • Teschke M, Kawaguchi S, Meyer B (2007) Simulated light regimes affect feeding and metabolism of Antarctic krill, Euphausia superba. Limnol Oceanogr 52:1046–1054

    Article  Google Scholar 

  • Teschke M, Kawaguchi S, Meyer B (2008) Effects of simulated light regimes on maturity and body composition of Antarctic krill, Euphausia superba. Mar Biol 154:315–332

    Article  Google Scholar 

  • Teschke M, Wendt S, Kawaguchi S, Kramer A, Meyer B (2011) A circadian clock in Antarctic krill: an endogenous timing system governs metabolic output rhythms in the Euphausid species Euphausia superba. PLoS ONE 6:e26090. doi:10.1371/journal.pone.0026090

    Article  CAS  Google Scholar 

  • Thomas PG, Ikeda I (1987) Sexual regression, shrinkage, re-maturation and growth of spent female Euphausia superba in the laboratory. Mar Biol 95:357–363

    Article  Google Scholar 

  • Thorpe SE, Murphy EJ, Watkins JL (2007) Circumpolar connections between Antarctic krill (Euphausia superba Dana) populations: investigating the roles of ocean and sea ice transport. Deep-Sea Res I 54:792–810

    Article  Google Scholar 

  • Töbe K, Meyer B, Fuentes V (2010) Detection of zooplankton items in the stomach and gut content of larval krill, Euphausia superba, using a molecular biology approach. Polar Biol 33:407–414

    Google Scholar 

  • Torres JJ, Aarset AV, Donnelly J, Hopkins TL, Lancraft TM, Ainley DG (1994a) Metabolism of Antarctic micronektonic Crustacea as a function of depth of occurrence and season. Mar Ecol Prog Ser 113:207–219

    Article  Google Scholar 

  • Torres JJ, Aarset AV, Donnelly J, Hopkins TL, Lancraft TM, Ainley DG (1994b) Proximate composition and overwintering strategies of Antarctic micronektonic Crustacea. Mar Ecol Prog Ser 113:221–232

    Article  Google Scholar 

  • Windisch HS, Kathöver R, Pörtner H-O et al (2011) Thermal acclimation in Antarctic fish: transcriptomic profiling of metabolic pathways. Am J Physiol Regul Integr Comp Physiol 301:R1453–R1466

    Article  CAS  Google Scholar 

  • Windisch HS, Frickenhaus S, John U et al (2014) Stress response or beneficial temperature acclimation: transcriptome signatures in Antarctic fish (Pachycara brachycephalum). Mol Ecol 23:3469–3482

    Article  CAS  Google Scholar 

  • Witek Z, Koronkiewicz A, Soszka GJ (1980) Certain aspects of the early life history of krill, Euphausia superba Dana (Crustacea). Pol Polar Res 1:97–115

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meyer, B., Teschke, M. (2016). Physiology of Euphausia superba . In: Siegel, V. (eds) Biology and Ecology of Antarctic Krill. Advances in Polar Ecology. Springer, Cham. https://doi.org/10.1007/978-3-319-29279-3_4

Download citation

Publish with us

Policies and ethics