Skip to main content

The Fishery for Antarctic Krill: Its Current Status and Management Regime

  • Chapter
  • First Online:
Book cover Biology and Ecology of Antarctic Krill

Part of the book series: Advances in Polar Ecology ((AVPE))

Abstract

Antarctic krill has been fished commercially in the Southern Ocean since the 1970s and has been consistently the largest fishery, by tonnage, in the region since then. The fishery has seen changes in the nations involved, with early catches dominated by vessels from the USSR, Japanese vessels in the middle years and, more recently, most of the catch has been taken by vessels from Norway. A variety of products have emerged from the fishery with early efforts aimed at human consumption but latterly, the bulk of the catch has been used as high-end aquaculture feed with a small but valuable fraction being used to produce krill oil. The fishery has been managed by the international Commission for the Conservation of Antarctic Marine Living Resources which recognised the potential threat to the marine ecosystem through krill harvesting and which has implemented a precautionary approach to management of the fishery. Currently the fishery catches approximately 300,000 tonnes annually, all from the South Atlantic, where the precautionary catch limit has been set at 5.6 million tonnes. The fishery and its management regime will face challenges in the future with the emergence of new technologies, increased catches by new entrants and environmental changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelung D, Buchholz F, Culik B, Keck A (1987) Fluoride in tissues of krill Euphausia superba Dana and Meganyctiphanes norvegica M. Sars in relation to the moult cycle. Polar Biol 7:43–50

    Article  CAS  Google Scholar 

  • Agnew DJ (2004) Fishing south: the history and management of South Georgia fisheries. Government of South Georgia

    Google Scholar 

  • Agnew DJ, Grove P, Peatman T, Burn R, Edwards CTT (2010) Estimating optimal observer coverage in the Antarctic krill fishery. CCAMLR Sci 17:139–154

    Google Scholar 

  • Aker (2010) www.akerbiomarine.com. Accessed 23rd July 2010

  • ARK (2015) www.ark-krill.org/. Accessed Feb 2015

  • Arthi V (2009) Omega 3 concentrates – window of opportunities. Frost & Sullivan Market Insight, 27 Aug 2009. http://www.frost.com/prod/servlet/market-insight-top.pag?docid=178244151. Accessed 2nd Nov 2009

  • Atkinson A, Shreeve RS, Hirst AG, Rothery P, Tarling GA, Pond DW, Korb RE, Murphy EJ, Watkins JL (2006) Natural growth rates in Antarctic krill (Euphausia superba): II. Predictive models based on food, temperature, body length, sex, and maturity stage. Limnol Oceanogr 51(2):973–987

    Article  Google Scholar 

  • Atkinson A, Siegel V, Pakhomov EA, Jessopp MJ, Loeb V (2009) A re-appraisal of the total biomass and annual production of Antarctic krill. Deep-Sea Res I Oceanogr Res Pap 56(5):727–740

    Article  Google Scholar 

  • Backes JM, Howard PA (2014) Krill oil for cardiovascular risk prevention: is it for real? Hosp Pharm 49(10):907–912

    Article  CAS  Google Scholar 

  • Batetta B, Griinari M, Carta G, Murru E, Ligresti A, Cordeddu L, Giordano E, Sanna F, Bisogno T, Uda S, Collu M, Bruheim I, Di Marzo V, Banni S (2009) Endocannabinoids may mediate the ability of (n-3) fatty acids to reduce ectopic fat and inflammatory mediators in obese zucker rats. J Nutr 139(8):1495–1501

    Article  CAS  Google Scholar 

  • Bridges KM, Gigliotti JC, Altman S, Jaczynski J, Tou JC (2010) Determination of digestibility, tissue deposition and metabolism of the omega-3 fatty acid content of krill protein concentrate in growing rats. J Agric Food Chem 58:2830–2837

    Article  CAS  Google Scholar 

  • Budzinski E, Bykowski P, Dutkiewicz D (1985) Possibilities of processing and marketing of products made from Antarctic krill, FAO fisheries technical paper no. 268. FAO, Rome, p. 46p

    Google Scholar 

  • Bunea R, Farrah KE, Deutsch L (2004) Evaluation of the effects of Neptune Krill Oil on the clinical course of hyperlipidemia. Altern Med Rev 9(4):420–428

    Google Scholar 

  • Bustos R, Romo L, Yáñez K, Díaz G, Romo C (2003) Oxidative stability of carotenoid pigments and polyunsaturated fatty acids in microparticulate diets containing krill oil for nutrition of marine fish larvae. J Food Eng 56:289–293

    Article  Google Scholar 

  • CCAMLR (2002) Report of the twenty-first meeting of the commission. CCAMLR, Hobart

    Google Scholar 

  • CCAMLR (2003) Report of the twenty-second meeting of the commission. CCAMLR, Hobart

    Google Scholar 

  • CCAMLR (2006) Report of the twenty-fifth meeting of the commission. CCAMLR, Hobart

    Google Scholar 

  • CCAMLR (2007) Report of the twenty-sixth meeting of the commission. CCAMLR, Hobart

    Google Scholar 

  • CCAMLR (2008) Report of the twenty-seventh meeting of the commission. CCAMLR, Hobart

    Google Scholar 

  • CCAMLR (2009a) www.ccamlr.org. Accessed 1st Oct 2009

  • CCAMLR (2009b) Report of the twenty-eighth meeting of the commission. CCAMLR, Hobart

    Google Scholar 

  • CCAMLR (2014) Report of the thirty-third meeting of the commission. CCAMLR, Hobart

    Google Scholar 

  • CCAMLR (2015) Stat Bull, 26 http://www.ccamlr.org/en/data/statistical-bulletin

  • CCAMLR-WG-EMM (2014) Report of the working group on ecosystem monitoring and management (Punta Arenas, Chile, 7 to 18 July 2014)

    Google Scholar 

  • Chandrasekar B, Troyer DA, Venkatraman JT, Fernandes G (1996) Tissue specific regulation of transforming growth factors beta by omega-3 lipid-rich krill oil in autoimmune murine lupus. Nutr Res 16(3):489–503

    Article  CAS  Google Scholar 

  • Chi H, Li X, Yang X (2013) Processing status and utilisation strategies of Antarctic krill (Euphausia superba) in China. World J Fish Mar Sci 5(3):275–281

    Google Scholar 

  • Constable AJ (2011) Lessons from CCAMLR on the implementation of the ecosystem approach to managing to fisheries. Fish Fish 12(2):138–151

    Article  Google Scholar 

  • Constable AJ, Nicol S (2002) Defining smaller-scale management units to further develop the ecosystem approach in managing large-scale pelagic krill fisheries in Antarctica. CCAMLR Sci 9:117–131

    Google Scholar 

  • Constable AJ, de la Mare WK, Agnew DJ, Everson I, Miller D (2000) Managing fisheries to conserve the Antarctic marine ecosystem: practical implementation of the Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR). ICES J Mar Sci 57:778–791

    Article  Google Scholar 

  • Croxall JP, Nicol S (2004) Management of Southern Ocean fisheries: global forces and future sustainability. Antarct Sci 16(4):569–584

    Article  Google Scholar 

  • Davis DA, Arnold CR (2000) Replacement of fish meal in practical diets for the pacific white shrimp, Liptopenaeus vannamei. Aquaculture 185:291–298

    Article  Google Scholar 

  • Deutsch L (2007) Evaluation of the effect of Neptune Krill Oil on chronic inflammation and arthritic symptoms. J Am Coll Nutr 26(1):39–48

    Article  CAS  Google Scholar 

  • Duan J, Jiang Y, Cherian G, Zhao Y (2010) Effect of combined chitosan-krill oil coating and modified atmosphere packaging on the storability of cold-stored lingcod (Ophiodon elongates). Food Chem 122(4):1035–1042

    Article  CAS  Google Scholar 

  • Eddie GC (1977) The harvesting of krill. Southern Ocean Fisheries Survey Programme. FAO, Rome, GLO/SO/77/2, 76p

    Google Scholar 

  • Edwards DM, Heap JA (1981) Convention on the conservation of Antarctic marine living resources: a commentary. Polar Rec 20(127):353–362

    Article  Google Scholar 

  • El-Sayed SZ (ed) (1977) Biological investigations of marine Antarctic systems and stocks (BIOMASS), vol 1. Scott Polar Research Institute, Cambridge

    Google Scholar 

  • El-Sayed SZ (ed) (1994) Southern Ocean ecology: the BIOMASS perspective. Cambridge University Press, Cambridge

    Google Scholar 

  • Everson I (1977) The living resources of the Southern Ocean. Southern Ocean Fisheries Survey Programme. FAO, Rome, GLO/SO/77/1, 156p

    Google Scholar 

  • Fabra A, Gascón V (2008) The Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR) and the ecosystem approach. Int J Mar Coast Law 23:567–598

    Article  Google Scholar 

  • FAO (2008) The state of world fisheries and aquaculture. FAO Fisheries and Aquaculture Department, Rome. 178p

    Google Scholar 

  • Fereidoon S, Wanasundara UN (1998) Omega-3 fatty acid concentrates: nutritional aspects and production technologies. Trends Food Sci Technol 9:230–240

    Article  Google Scholar 

  • Fernholm B, Rudback GT (1989) Marine resource management of the Antarctic. Ambio 18(1):68–70

    Google Scholar 

  • Flores H, Atkinson A, Kawaguchi S, Krafft BA, Milinevsky G, Nicol S, Reiss C, Tarling GA, Werner R, Bravo Rebolledo E, Cirelli V, Cuzin-Roudy J, Fielding S, Groeneveld JJ, Haraldsson M, Lombana A, Marschoff E, Meyer B, Pakhomov EA, Rombolá E, Schmidt K, Siegel V, Teschke M, Tonkes H, Toullec JY, Trathan PN, Tremblay N, Van de Putte AP, van Franeker JA, Werner T (2012) Impact of climate change on Antarctic krill. Mar Ecol Prog Ser 458:1–19

    Article  Google Scholar 

  • Floreto EAT, Brown PB, Bayer RC (2001) The effects of krill hydrolysate-supplemented soy-bean based diets on the growth, colouration, amino and fatty acids profiles of juvenile American lobster, Homarus americanus. Aquac Nutr 7:33–43

    Article  CAS  Google Scholar 

  • Foster J, Nicol S, Kawaguchi S (2011) The use of patent databases to detect trends in the krill fishery. CCAMLR Sci 18:135–144

    Google Scholar 

  • Frank RF (1983) The convention on the conservation of Antarctic marine living resources. Ocean Dev Int Law J 13(3):291–345

    Article  Google Scholar 

  • Gaber MMA (2005) The effect of different levels of krill meal supplementation of soybean-based diets on feed intake, digestibility, and chemical composition of juvenile Nile Tilapia Oreochromis niloticus, L. J World Aquacult Soc 36(3):346–353

    Article  Google Scholar 

  • Giogios I, Grigorakis K, Nengas I, Papasolomontos S, Papaioannou N, Alexis MN (2009) Fatty acid composition and volatile compounds of selected marine oils and meals. J Sci Food Agric 89:88–100

    Article  CAS  Google Scholar 

  • Godø OR, Reiss C, Siegel V, Watkins JL (2014) Commercial fishing vessels as research vessels in the Antarctic – requirements and solutions exemplified with a new vessel. CCAMLR Sci 21:11–1

    Google Scholar 

  • Grantham GJ (1977) The utilization of Krill. Southern Ocean Fisheries Survey Programme. FAO, Rome: GLO/SO/77/3 61p

    Google Scholar 

  • Grave H (1981) Fluoride content of salmonids fed on Antarctic krill (Euphausia superba). Aquaculture 24:191–196

    Article  Google Scholar 

  • Hewitt RP, Low EHL (2000) The fishery on Antarctic Krill: defining an ecosystem approach to management. Rev Fish Sci 8(3):235–298

    Article  Google Scholar 

  • Hewitt RP, Watkins J, Naganobu M, Sushin V, Brierley AS, Demer D, Kasatkina S, Takao Y, Goss C, Malyshko A, Brandon M, Kawaguchi S, Siegel V, Trathan P, Emery J, Everson I, Miller D (2004a) Biomass of Antarctic krill in the Scotia Sea in January/February 2000 and its use in revising an estimate of precautionary yield. Deep-Sea Res II Top Stud Oceanogr 51(12):1215–1236

    Article  Google Scholar 

  • Hewitt RP, Watters G, Trathan PN, Croxall JP, Goebel ME, Ramm D, Reid K, Trivelpiece WZ, Watkins JL (2004b) Options for allocating the precautionary catch limit of krill among small-scale management units in the Scotia Sea. CCAMLR Sci 11:81–97

    Google Scholar 

  • Hill SL (2013) Prospects for a sustainable increase in the availability of long chain omega 3s: lessons from the Antarctic Krill fishery. In: Omega-6/3 fatty acids. Humana Press, New York, pp 267–296

    Chapter  Google Scholar 

  • Hill SL, Cannon M (2013) A potential feedback approach to ecosystem-based management: model predictive control of the Antarctic krill fishery. CCAMLR Sci 20:119–137

    Google Scholar 

  • Hill SL, Phillips T, Atkinson A (2013) Potential climate change effects on the habitat of Antarctic krill in the Weddell quadrant of the Southern Ocean. PLoS One 8(8):e72246. doi:10.1371/journal.pone.0072246

    Article  CAS  Google Scholar 

  • Howard M (1989) The convention on the conservation of Antarctic marine living resources: a five-year review. Int Comp Law Q 38:104–149

    Article  Google Scholar 

  • Ichii T (2000) Krill harvesting. In: Everson I (ed) Krill biology, ecology and fisheries. Blackwell Science, Oxford, pp 228–262

    Google Scholar 

  • Jacquet J, Pauly D (2010) Seafood stewardship in crisis. Nature 467(2):28–29

    Article  CAS  Google Scholar 

  • Julsham K, Malde MK, Bjorvatn K, Krogedal P (2004) Fluoride retention of Atlantic salmon (Salmo salar) fed krill meal. Aquac Nutr 10(1):9–13

    Article  Google Scholar 

  • Jung HR, Kim MA, Seo YS, Lee YB, Chun BS, Kim SB (2013) Decreasing effect of fluoride content in Antarctic krill (Euphausia superba) by chemical treatments. Int J Food Sci Technol 46(6):1252–1259

    Article  CAS  Google Scholar 

  • Kalinowski CT, Izquierdo MS, Schuchardt LE (2007) Dietary supplementation time with shrimp shell meal on red porgy (Pagrus pagrus) skin colour and carotenoid concentration. Aquaculture 272:451–457

    Article  Google Scholar 

  • Karlsen Ø, Suontama J, Olsen RE (2006) Effect if Antarctic krillmeal on quality of farmed Atlantic cod (Gadus morhua L.). Aquac Res 37(16):1676–1684

    Article  CAS  Google Scholar 

  • Karlstam B, Vincen J, Johansson B, Bryno C (1991) A simple purification method of squeezed krill for obtaining high levels of hydrolytic enzymes. Prep Biochem 21:237–256

    CAS  Google Scholar 

  • Kawaguchi S, Nicol S (2007) Learning about Antarctic krill from the fishery. Antarct Sci 19(2):219–230

    Article  Google Scholar 

  • Kawaguchi S, Satake M (1994) Relationship between recruitment of the Antarctic Krill and the degree of ice cover near the South Shetland Islands. Fish Sci 60(1):123–124

    Google Scholar 

  • Kawaguchi S, Ichii T, Naganobu M (1999) Green krill, the indicator of micro-and nano-size phytoplankton availability to krill. Polar Biol 22(2):133–136

    Article  Google Scholar 

  • Kawaguchi S, Nicol S, Taki K, Naganobu M (2006) Fishing ground selection in the Antarctic krill fishery: trends in patterns across years, seasons and nations. CCAMLR Sci 13:117–141

    Google Scholar 

  • Kawaguchi S, Nicol S, Press AJ (2009) Direct effects of climate change on the Antarctic krill fishery. Fish Manag Ecol 16:424–427

    Article  Google Scholar 

  • Kawaguchi S, Ishida A, King R, Raymond B, Waller N, Constable A, Nicol S, Wakita M, Ishimatsu A (2013) Risk maps for Antarctic krill under projected Southern Ocean acidification. Nat Clim Chang 3(9):843–847

    Article  CAS  Google Scholar 

  • Kidd PM (2009) Integrated brain restoration after ischemic stroke – medical management, risk factors, nutrients, and other interventions for managing inflammation and enhancing brain plasticity. Altern Med Rev 14(1):14–35

    Google Scholar 

  • Kim M-A, Jung H-R, Lee Y-B, Chun B-S, Kim SB (2014) Monthly variations in the nutritional composition of Antarctic krill Euphausia superba. Fish Aquat Sci 17(4):409–419

    Google Scholar 

  • Kock K-H, Reid K, Croxall J, Nicol S (2007) Fisheries in the Southern Ocean: an ecosystem approach. Philos Trans R Soc B 362:2333–2349

    Article  Google Scholar 

  • Krafft BA, Skaret G, Calise L (2011) Antarctic krill and apex predators in the South Orkney Islands area 2011, surveyed with the commercial fishing vessel Saga Sea. Rapport fra Havforskningen; Nr. 6–2011

    Google Scholar 

  • Lyubimova TC, Naumov AG, Lagunov LL (1973) Prospects of the utilisation of krill and other unconventional resources of the world ocean. J Fish Res Board Can 30(12/2):2196–2201

    Article  Google Scholar 

  • Maguire J-J, Sissenwine M, Csirke J, Grainger R, Garcia S (2006) The state of world highly migratory, straddling and other high seas fishery resources and associated species, FAO fisheries technical paper no. 495. FAO, Rome. 84p

    Google Scholar 

  • McElroy JK (1984) Antarctic fisheries. History and prospects. Mar Policy 8(3):239–259

    Article  Google Scholar 

  • Melrose J, Hall A, Macpherson C, Bellenger CR, Ghosh P (1995) Evaluation of digestive proteinases from the Antarctic krill Euphausia superba as potential chemonucleolytic agents. In vitro and in vivo studies. Arch Orthop Trauma Surg 114:145–152

    Article  CAS  Google Scholar 

  • Miller DGM (1991) Exploitation of Antarctic marine living resources: a brief history and a possible approach to managing the krill fishery. S Afr J Mar Sci 10:321–339

    Article  Google Scholar 

  • Miller DGM (2002) Antarctic krill and ecosystem management—from Seattle to Siena. CCAMLR Sci 9:175–2002

    Google Scholar 

  • Miller D, Agnew D (2000) Management of krill fisheries in the Southern Ocean. In: Everson I (ed) Krill biology, ecology and fisheries. Blackwell Science, Oxford, pp 300–337

    Google Scholar 

  • Moreira AC, Muller ACA, Pereira N, Antunes A (2006) Pharmaceutical patents on plant derived materials in Brazil: policy, law and statistics. World Patent Inf 28:34–42

    Article  CAS  Google Scholar 

  • Moretti VM, Mentasti T, Bellagamba F, Luzzana U, Caprino GM, Giani I, Valfrè F (2006) Determination of astaxanthin stereoisomers and colour attributes in flesh of rainbow trout (Oncorhynchus mykiss) as a tool to distinguish the dietary pigmentation source. Food Addit Contam 23(11):1056–1063

    Article  CAS  Google Scholar 

  • MSC (2010) www.msc.org. Marine Stewardship Council. Accessed 3 Aug 2010

  • MSC (2015) www.msc.org/track-a-fishery/fisheries-in-the-program/in-assessment/southern-ocean/olympic-seafood-antarctic-krill. Accessed Feb 2015

  • Naczk M, Synowiecki J, Sikorski ZE (1981) The gross chemical composition of Antarctic krill waste. Food Chem 7:175–179

    Article  CAS  Google Scholar 

  • Nichols PD (2007) Fish oil sources. In: Breivik H (ed) Long-chain omega-3 speciality oils. The Oily Press, Cambridge, p 314

    Google Scholar 

  • Nichols PD, Nelson MM (2007) Marine oils in Australasia. In: O’Connor, J (Chairman) Handbook of Australasian edible oils. Oils and Fats Specialist Group of NZIC. Auckland, p 297

    Google Scholar 

  • Nicol S (1991) CCAMLR and its approaches to management of the krill fishery. Polar Rec 27(162):229–236

    Article  Google Scholar 

  • Nicol S (1992) Management of the krill fishery; was CCAMLR slow to act? Polar Rec 28(165):155–157

    Article  Google Scholar 

  • Nicol S, De la Mare W (1993) Ecosystem management and the Antarctic krill. Am Sci 81(1):36

    Google Scholar 

  • Nicol S, Endo Y (1997) Krill fisheries of the world, FAO fisheries technical paper no. 367. FAO, Rome, p 81

    Google Scholar 

  • Nicol S, Endo Y (1999) Krill fisheries – their development, management and ecosystem implications. Aquat Living Resour 12(2):105–120

    Article  Google Scholar 

  • Nicol S, Foster J (2003) Recent trends in the fishery for Antarctic krill. Aquat Living Resour 16:42–45

    Article  Google Scholar 

  • Nicol S, Hosie GW (1993) Chitin production by Krill. Biochem Syst Ecol 21(2):181–184

    Article  CAS  Google Scholar 

  • Nicol S, Pauly T, Bindoff NL, Strutton PG (2000) “BROKE” a biological/oceanographic survey off the coast of East Antarctica (80–150°E) carried out in January–March 1996. Deep- Sea Res II 47(12/13):2281–2297

    Article  Google Scholar 

  • Nicol S, Meiners K, Raymond B (2010) Editorial. BROKE-West, a large ecosystem survey of the South West Indian Ocean sector of the Southern Ocean 30–80°E (CCAMLR Division 58.4.2). Deep-Sea Res II 57(9–10):693–700

    Article  CAS  Google Scholar 

  • Nicol S, Foster J, Kawaguchi S (2012) The fishery for Antarctic krill – recent developments. Fish Fish 13(1):30–40

    Article  Google Scholar 

  • Oehlenschläger J, Schreiber W (1981) A functional protein concentrate (FKPC) from Antarctic Krill (Euphausia superba, Dana 1850). Z Lebensm Unters Forsch 172:393–398

    Google Scholar 

  • Okuda T, Kiyota M (2012) Analysis of variability of krill size and fish by-catch in the Japanese krill fishery based on scientific observer data. CCAMLR Sci 19:31–47

    Google Scholar 

  • Opstad I, Suontama J, Langmyhr E, Olsen RE (2006) Growth, survival and development of Atlantic cod (Gadus morhua L.) weaned onto diets containing various sources of marine protein. ICES J Mar Sci 63:320–325

    Article  Google Scholar 

  • Parker RW, Tyedmers PH (2012) Life cycle environmental impacts of three products derived from wild-caught Antarctic krill (Euphausia superba). Environ Sci Technol 46(9):4958–4965

    Google Scholar 

  • Pilkington A (2004) Technology portfolio alignment as an indicator of commercialisation: an investigation of fuel cell patenting. Technovation 24:761–771

    Article  Google Scholar 

  • Quetin LB, Ross RM (2003) Episodic recruitment in Antarctic krill Euphausia superba in the Palmer LTER study region. Mar Ecol Prog Ser 259:185–200

    Google Scholar 

  • Sabourenkov EN, Appleyard E (2005) Scientific observations in CCAMLR fisheries – past, present and future. CCAMLR Sci 12:81–98

    Google Scholar 

  • Savage GP, Foulds MJ (1987) Chemical composition and nutritive value of Antarctic krill (Euphausia superba) and southern blue whiting (Micromesistius australis). N Z J Mar Freshw Res 21:599–604

    Article  Google Scholar 

  • SC-CCAMLR (1999) Report of the eighteenth meeting of the scientific committee. CCAMLR, Hobart

    Google Scholar 

  • SC-CCAMLR (2000) Report of the nineteenth meeting of the scientific committee. CCAMLR, Hobart

    Google Scholar 

  • SC-CCAMLR (2001) Report of the twentieth meeting of the scientific committee. CCAMLR, Hobart

    Google Scholar 

  • SC-CCAMLR (2002) Report of the twenty-first meeting of the scientific committee. CCAMLR, Hobart

    Google Scholar 

  • SC-CCAMLR (2004) Report of the twenty-third meeting of the scientific committee. CCAMLR, Hobart

    Google Scholar 

  • SC-CCAMLR (2005) Report of the twenty-fourth meeting of the scientific committee. CCAMLR, Hobart

    Google Scholar 

  • SC-CCAMLR (2008) Report of the twenty-seventh meeting of the scientific committee. CCAMLR, Hobart

    Google Scholar 

  • SC-CCAMLR (2009) Report of the twenty-eighth meeting of the scientific committee. CCAMLR, Hobart

    Google Scholar 

  • SC-CCAMLR (2010) Report of the twenty-ninth meeting of the scientific committee. CCAMLR, Hobart

    Google Scholar 

  • SC-CCAMLR (2011) Report of the thirtieth meeting of the scientific committee. CCAMLR, Hobart

    Google Scholar 

  • SC-CCAMLR (2013) Report of the thirty-second meeting of the scientific committee. CCAMLR, Hobart

    Google Scholar 

  • SC-CCAMLR (2014) Report of the thirty-third meeting of the scientific committee. CCAMLR, Hobart

    Google Scholar 

  • Schiermeier Q (2010) Green patents corralled. Nature 465(6):21

    Article  CAS  Google Scholar 

  • Schmidt K, Atkinson A, Steigenberger S, Fielding S, Lindsay MCM, Pond DW, Tarling GA, Klevjer TA, Allen CS, Nicol S, Achterberg EP (2011) Seabed foraging by Antarctic krill: implications for stock assessment, bentho-pelagic coupling, and the vertical transfer of iron. Limnol Oceanogr 56(4):1411–1428

    Article  CAS  Google Scholar 

  • Schulz H (2014) Nutra-Ingrediants USA.com. Aker says MSC recertification eliminates any lingering doubts on sustainability of krill. http://www.nutraingredients-usa.com/Suppliers2/Aker-says-MSC-recertification-eliminates-any-lingering-doubts-on-sustainability-of-krill. Accessed Feb 2015

  • Shahidi F, Wanasundara UN (1998) Omega-3 fatty acid concentrates: nutritional aspects and production technologies. Trends Food Sci Technol 9:230–240

    Article  CAS  Google Scholar 

  • Sidhu GS, Montgomery WA, Holloway GL, Johnson AR, Walker DM (1970) Biochemical composition and nutritive value of krill (Euphausia superba Dana). J Sci Food Agric 21:293–296

    Article  CAS  Google Scholar 

  • Siebert G, Kühl J, Hannover R (1980) Nutritional experiments with krill. In: Connell JJ (ed) Advances in fish science and technology. Blackwell Scientific Publications Ltd, London, pp 332–334

    Google Scholar 

  • Siegel V, Watkins J (2016) Distribution, biomass and demography of Antarctic krill, Euphausia superba. In: Siegel V (ed) Biology and ecology of Antarctic krill. Springer, Cham, pp 21–100

    Google Scholar 

  • Smith DM, Tabrett SJ, Barclay MC, Irvin SJ (2005) The efficacy of ingredients included in shrimp feeds to stimulate uptake. Aquac Nutr 11:263–272

    Article  CAS  Google Scholar 

  • Soevik T, Braekkan OR (1979) Fluoride in Antarctic Krill (Euphausia superba) and Atlantic Krill (Meganyctiphanes norvegica). J Fish Res Board Can 36:1414–1416

    Google Scholar 

  • Suontama J, Kiessling A, Melle W, Waagbø R, Olsen RE (2007) Protein from Northern krill (Thysanoessa inermis), Antarctic krill (Euphausia superba) and the Arctic amphipod (Themisto libellula) can partially replace fish meal in diets to Atlantic salmon (Salmo salar) without affecting product quality. Aquac Nutr 13:50–58

    Article  CAS  Google Scholar 

  • Tandy S, Chung RWS, Wat E, Kamili A, Berge K, Griinari M, Cohn JS (2009) Dietary krill oil supplementation reduces hepatic steatosis, glycaemia, and hypercholesterolemia in high-fat-fed mice. J Agric Food Chem 57:9339–9345

    Article  CAS  Google Scholar 

  • Tenuto-Filho A (1993) Fluorine removal during production of krill paste and protein concentrates. Acta Alimaentaria 22:269–281

    Google Scholar 

  • Tenuto-Filho A, Alvarenga RCC (1999) Reduction of the bioavailability of fluoride from Antarctic krill by calcium. Int J Food Sci Nutr 50:297–302

    Article  Google Scholar 

  • Tou JC, Jaczynski J, Chen-Chen Y (2007) Krill for human consumption: nutritional value and potential health benefits. Nutr Rev 65(2):63–77

    Article  Google Scholar 

  • Trathan PN, Hill S (2016) The importance of krill predation in the Southern Ocean. In: Siegel V (ed) Biology and ecology of Antarctic krill. Springer, Cham, pp 321–350

    Google Scholar 

  • Voronia NM (1983) Biomass and production of Antarctic krill (Euphausia superba Dana). Oceanology 23(6):760–762

    Google Scholar 

  • Wang Z, Yin X (2012) Comparison of the defluoridation efficiency of calcium phosphate and chitin in the exoskeleton of Antarctic krill. Adv Polar Sci 23(3):149–154

    Article  Google Scholar 

  • Wang L, Xue C, Wang Y, Yang B (2011) Extraction of proteins with low fluoride level from Antarctic krill (Euphausia superba) and their composition analysis. J Agric Food Chem 59(11):6108–6112

    Google Scholar 

  • Washington S, Ababouch L (2011) Private standards and certification in fisheries and aquaculture: current practice and emerging issues. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Xie CL, Kim HS, Shim KB, Kim YK, Yoon NY, Kim PH, Yoon HO (2012) Organic acid extraction of fluoride from Antarctic Krill Euphausia superba. Fish Aquat Sci 15(3):203–207

    CAS  Google Scholar 

  • Yanase M (1981) Chemical composition of the exoskeleton of Antarctic krill. Bull Tokai Reg Fish Res Lab 83:1–6

    Google Scholar 

  • Yoshitomi B, Aoki M, Oshima S (2007) Effect of total replacement of dietary fish meal by low fluoride krill (Euphausia superba) meal on growth performance of rainbow trout (Oncorhynchus mykiss) in fresh water. Aquaculture 266:219–225

    Article  CAS  Google Scholar 

  • Zhang L, Lu X, Wang Z, Qin L, Lin Z, Yuan L, Zhang W, Yin X (2014) Evaluation of the biological toxicity of fluorine in Antarctic krill. Adv Polar Sci 25(1):38–45

    Google Scholar 

Download references

Acknowledgements

We would like to thank the CCAMLR Secretariat, in particular Drew Wright, Keith Reid, Lucy Robinson and David Ramm, for their assistance and patience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Nicol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nicol, S., Foster, J. (2016). The Fishery for Antarctic Krill: Its Current Status and Management Regime. In: Siegel, V. (eds) Biology and Ecology of Antarctic Krill. Advances in Polar Ecology. Springer, Cham. https://doi.org/10.1007/978-3-319-29279-3_11

Download citation

Publish with us

Policies and ethics