Skip to main content

Thermal Transport in Graphene, Few-Layer Graphene and Graphene Nanoribbons

  • Chapter
  • First Online:
Thermal Transport in Low Dimensions

Part of the book series: Lecture Notes in Physics ((LNP,volume 921))

Abstract

The discovery of unusual heat conduction properties of graphene has led to a surge of theoretical and experimental studies of phonon transport in two-dimensional material systems. The rapidly developing graphene thermal field spans from theoretical physics to practical engineering applications. In this invited review we outline different theoretical approaches developed for describing phonon transport in graphene and provide comparison with available experimental thermal conductivity data. A special attention is given to analysis of the recent theoretical results for the phonon thermal conductivity of graphene and few-layer graphene, the effects of the strain, defects, isotopes and edge scattering on the acoustic phonon transport in these material systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balandin, A.A.: Better computing through CPU cooling. IEEE Spectrum. 29–33 (2009)

    Google Scholar 

  2. Pop, E.: Energy dissipation and transport in nanoscale devices. Nano Res. 3, 147 (2010)

    Article  Google Scholar 

  3. Balandin, A., Wang, K.L.: Effect of phonon confinement on the thermoelectric figure of merit of quantum wells. J. Appl. Phys. 84, 6149 (1998)

    Article  ADS  Google Scholar 

  4. Li, D., Wu, Y., Kim, P., Shi, L., Yang, P., Majumdar, A.: Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934 (2003)

    Article  ADS  Google Scholar 

  5. Balandin, A.A., Pokatilov, E.P., Nika, D.L.: Phonon engineering in hetero- and nanostructures. J. Nanoelectron. Optoelectron. 2, 140 (2007)

    Article  Google Scholar 

  6. Pokatilov, E.P., Nika, D.L., Balandin, A.A.: Acoustic-phonon propagation in rectangular semiconductor nanowires with elastically dissimilar barriers. Phys. Rev. B 72, 113311 (2005)

    Article  ADS  Google Scholar 

  7. Pokatilov, E.P., Nika, D.L., Balandin, A.A.: Acoustic phonon engineering in coated cylindrical nanowires. Superlattice Microst. 38, 168 (2005)

    Article  ADS  Google Scholar 

  8. Liu, W., Asheghi, M.: Thermal conductivity measurements of ultra-thin single crystal silicon layers. J. Heat Transfer 128, 75 (2006)

    Article  Google Scholar 

  9. Piazza, F., Lepri, S.: Heat wave propagation in a nonlinear chain. Phys. Rev. B 79, 094306 (2009)

    Article  ADS  Google Scholar 

  10. Lepri, S., Livi, R., Politi, A.: Studies of thermal conductivity in Fermi-Pasta-Ulam-like lattices. Chaos 15, 015118 (2005)

    Article  ADS  Google Scholar 

  11. Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  12. Basile, G., Bernardin, C., Olla, S.: Momentum conversion model with anomalous thermal conductivity in low dimensional system. Phys. Rev. Lett. 96, 204303 (2006)

    Article  ADS  Google Scholar 

  13. Pokatilov, E.P., Nika, D.L., Balandin, A.A.: Phonon spectrum and group velocities in AlN/GaN/AlN and related heterostructures. Superlattice Microst. 33, 155 (2003)

    Article  ADS  Google Scholar 

  14. Pernot, G., Stoffel, M., Savic, I., Pezzoli, F., Chen, P., Savelli, G., Jacquot, A., Schumann, J., Denker, U., Mönch, I., Deneke, G., Schmidt, O.G., Rampnoux, J.M., Wang, S., Plissonnier, M., Rastelli, A., Dilhaire, S., Mingo, N.: Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. Nature Mater. 9, 491 (2010)

    Article  ADS  Google Scholar 

  15. Nika, D.L., Pokatilov, E.P., Balandin, A.A., Fomin, V.M., Rastelli, A., Schmidt, O.G.: Reduction of lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering. Phys. Rev. B 84, 165415 (2011)

    Article  ADS  Google Scholar 

  16. Chang, C.W., Okawa, D., Garcia, H., Majumdar, A., Zettl, A.: Breakdown of Fourier’s law in nanotube thermal conductors. Phys. Rev. Lett. 101, 075903 (2008)

    Article  ADS  Google Scholar 

  17. Narayan, O., Ramaswamy, S.: Anomalous heat conduction in one dimensional momentum- conserving systems. Phys. Rev. Lett. 89, 200601 (2002)

    Article  ADS  Google Scholar 

  18. Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nature Mater. 10, 569 (2011)

    Article  ADS  Google Scholar 

  19. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single layer graphene. Nano Lett. 8, 902 (2008)

    Article  ADS  Google Scholar 

  20. Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E.P., Nika, D.L., Balandin, A.A., Bao, W., Miao, F., Lau, C.N.: Extremely high thermal conductivity in graphene: Prospects for thermal management application in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008)

    Article  ADS  Google Scholar 

  21. Ghosh, S., Nika, D.L., Pokatilov, E.P., Balandin, A.A.: Heat conduction in graphene: experimental study and theoretical interpretation. New J. Phys. 11, 095012 (2009)

    Article  ADS  Google Scholar 

  22. Ghosh, S., Bao, W., Nika, D.L., Subrina, S., Pokatilov, E.P., Lau, C.N., Balandin, A.A.: Dimensional crossover of thermal transport in few-layer graphene. Nature Mater. 9, 555 (2010)

    Article  ADS  Google Scholar 

  23. Nika, D.L., Pokatilov, E.P., Askerov, A.S., Balandin, A.A.: Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys. Rev. B 79, 155413 (2009)

    Article  ADS  Google Scholar 

  24. Nika, D.L., Ghosh, S., Pokatilov, E.P., Balandin, A.A.: Lattice thermal conductivity of graphene flakes: comparison with bulk graphite. Appl. Phys. Lett. 94, 203103 (2009)

    Article  ADS  Google Scholar 

  25. Nika, D.L., Pokatilov, E.P., Balandin, A.A.: Theoretical description of thermal transport in graphene: the issues of phonon cut-off frequencies and polarization branches. Phys. Stat. Sol. B 248, 2609 (2011)

    Article  ADS  Google Scholar 

  26. Nika, D.L., Askerov, A.S., Balandin, A.A.: Anomalous size dependence of the thermal conductivity of graphene ribbons. Nano Lett. 12, 3238 (2012)

    Article  Google Scholar 

  27. Nika, D.L., Balandin, A.A.: Two-dimensional phonon transport in graphene. J. Phys. Cond. Matter. 24, 233203 (2012)

    Google Scholar 

  28. Balandin, A.A., Nika, D.L.: Phonons in low-dimensions: engineering phonons in nanostructures and graphene. Mater Today 15, 266 (2012)

    Article  Google Scholar 

  29. Cahill, D.G., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R., Sr, P.: Nanoscale thermal transport. J. Appl. Phys. 93, 793 (2003)

    Article  ADS  Google Scholar 

  30. Bhandari, C.M., Rowe, D.M.: Thermal Conduction in Semiconductors. Wiley (1988)

    Google Scholar 

  31. Srivastava, G.P.: The Physics of Phonons, p. 127. Taylor & Francis Group, LLC (1990)

    Google Scholar 

  32. Mills, A.F.: Heat and Mass Transfer, p. 9. Richard D Irwin Inc. 9 (1995)

    Google Scholar 

  33. Ziman, J.M.: Principles of the Theory of Solids, 2nd edn. Cambridge University Press, New~York (2001)

    Google Scholar 

  34. Pierson, H.O.: Handbook of Carbon, Graphite, Diamonds and Fullerenes: Processing, Properties and Applications. Noyes Publications (2010)

    Google Scholar 

  35. Klemens, P.G.: Theory of the a-plane thermal conductivity of graphite. J. Wide Bandgap Mater. 7, 332 (2000)

    Article  Google Scholar 

  36. Klemens, P.G.: Thermal conductivity and lattice vibrational modes. In: Seitz, F., Turnbull, D (eds.) Solid State Physics,vol. 7, p. 1. Academic, New York (1958)

    Google Scholar 

  37. Callaway, J.: Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046 (1959)

    Article  ADS  MATH  Google Scholar 

  38. Parrott, J.E., Stuckes, A.D.: Thermal Conductivity of Solids. Methuen, New York (1975)

    Google Scholar 

  39. Ziman, J.M.: Electrons and Phonons: The Theory of Transport Phenomena in Solids. Oxford University Press, New York (2001)

    Book  MATH  Google Scholar 

  40. Balandin, A., Wang, K.L.: Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys. Rev. B 58, 1544 (1998)

    Article  ADS  Google Scholar 

  41. Zou, J., Balandin, A.: Phonon heat conduction in a semiconductor nanowires. J. Appl. Phys. 89, 2932 (2001)

    Article  ADS  Google Scholar 

  42. Balandin, A.A.: Nanophononics: phonon engineering in nanostructures and nanodevices. J. Nanosci. Nanotech. 5, 1015 (2005)

    Article  Google Scholar 

  43. Aksamija, Z., Knezevic, I.: Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes. Phys. Rev. B 82, 045319 (2010)

    Article  ADS  Google Scholar 

  44. Soffer, S.B.: Statistical model for the size effect in electrical conduction. J. Appl. Phys. 38, 1710 (1967)

    Article  ADS  Google Scholar 

  45. Balandin, A.A., Ghosh, S., Nika, D.L., Pokatilov, E.P.: Extraordinary thermal conductivity of graphene: possible applications in thermal management. ECS Trans. 28, 63 (2010)

    Article  Google Scholar 

  46. Balandin, A.A., Ghosh, S., Nika, D.L., Pokatilov, E.P.: Thermal conduction in suspended graphene layers. Fuller. Nanotub. Car. N. 18, 1 (2010)

    Google Scholar 

  47. Cai, W., Moore, A.L., Zhu, Y., Li, X., Chen, S., Shi, L., Ruoff, R.S.: Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 10, 1645 (2010)

    Article  ADS  Google Scholar 

  48. Jauregui, L.A., Yue, Y., Sidorov, A.N., Hu, J., Yu, Q., Lopez, G., Jalilian, R., Benjamin, D.K., Delk, D.A., Wu, W., Liu, Z., Wang, X., Jiang, Z., Ruan, X., Bao, J., Pei, S.S., Chen, Y.P.: Thermal transport in graphene nanostructures: experiments and simulations. ECS Trans. 28, 73 (2010)

    Article  Google Scholar 

  49. Faugeras, C., Faugeras, B., Orlita, M., Potemski, M., Nair, R.R., Geim, A.K.: Thermal conductivity of graphene in Corbino membrane geometry. ACS Nano 4, 1889 (2010)

    Article  Google Scholar 

  50. Lee, J.U., Yoon, D., Kim, H., Lee, S.W., Cheong, H.: Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy. Phys. Rev. B 83, 081419 (2011)

    Article  ADS  Google Scholar 

  51. Mak, K.F., Shan, J., Heinz, T.F.: Seeing many-body effects in single and few layer graphene: observation of two-dimensional saddle point excitons. Phys. Rev. Lett. 106, 046401 (2011)

    Article  ADS  Google Scholar 

  52. Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J., Kim, P., Choi, J., Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706 (2009)

    Article  ADS  Google Scholar 

  53. Kravets, V.G., Grigorenko, A.N., Nair, R.R., Blake, P., Anissimova, S., Novoselov, K.S., Geim, A.K.: Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys. Rev. B 81, 155413 (2010)

    Article  ADS  Google Scholar 

  54. Chen, S., Moore, A.L., Cai, W., Suk, J.W., An, J., Mishra, C., Amos, C., Magnuson, C.W., Kang, J., Shi, L., Ruoff, R.S.: Raman measurement of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments. ACS Nano 5, 321 (2011)

    Article  Google Scholar 

  55. Seol, J.H., Jo, I., Moore, A.L., Lindsay, L., Aitken, Z.H., Pettes, M.T., Li, X., Yao, Z., Huang, R., Broido, D., Mingo, N., Ruoff, R.S., Shi, L.: Two-dimensional phonon transport in supported graphene. Science 328, 213 (2010)

    Article  ADS  Google Scholar 

  56. Saito, K., Dhar, A.: Heat conduction in a three dimensional anharmonic crystal. Phys. Rev. Lett. 104, 040601 (2010)

    Article  ADS  Google Scholar 

  57. Zhong, W.R., Zhang, M.P., Ai, B.Q., Zheng, D.Q.: Chirality and thickness-dependent thermal conductivity of few-layer graphene: a molecular dynamics study. Appl. Phys. Lett. 98, 113107 (2011)

    Article  ADS  Google Scholar 

  58. Berber, S., Kwon, Y.-K., Tomanek, D.: Unusually high thermal conductivity in carbon nanotubes. Phys. Rev. Lett. 84, 4613 (2000)

    Article  ADS  Google Scholar 

  59. Lindsay, L., Broido, D.A., Mingo, N.: Flexural phonons and thermal transport in multilayer graphene and graphite. Phys. Rev. B 83, 235428 (2011)

    Article  ADS  Google Scholar 

  60. Singh, D., Murthy, J.Y., Fisher, T.S.: Mechanism of thermal conductivity reduction in few-layer graphene. J. Appl. Phys. 110, 044317 (2011)

    Article  ADS  Google Scholar 

  61. Jang, W., Chen, Z., Bao, W., Lau, C.N., Dames, C.: Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Lett. 10, 3909 (2010)

    Article  ADS  Google Scholar 

  62. Li, H., Ying, H., Chen, X., Nika, D.L., Cocemasov, I.V., Cai, W., Balandin, A.A., Chen, S.: Thermal conductivity of twisted bilayer graphene. Nanoscale 6, 13402 (2014)

    Article  ADS  Google Scholar 

  63. Cocemasov, A.I., Nika, D.L., Balandin, A.A.: Phonons in twisted bilayer graphene. Phys. Rev. B 88, 035428 (2013)

    Article  ADS  Google Scholar 

  64. Nika, D.L., Cocemasov, A.I., Balandin, A.A.: Specific heat of twisted bilayer graphene: engineering phonons by plane rotations. Appl. Phys. Lett. 105, 031904 (2014)

    Article  ADS  Google Scholar 

  65. Dorgan, V.E., Behnam, A., Conley, H.J., Bolotin, K.I., Pop, E.: High-filed electric and thermal transport in suspended graphene. Nano Lett. 13, 4581 (2013)

    Article  ADS  Google Scholar 

  66. Fu, X., Pereira, F.L.C., Yu, W., Zhang, K., Zhao, X., Bae, S., Bui, H.H., Loh, K.P., Donadio, D., Li, B., Ozyilmaz, B.: Length-dependent thermal conductivity in suspended single-layer graphene. Nature Commun. 5, 3689 (2015)

    Google Scholar 

  67. Pettes, M.T., Jo, I., Yao, Z., Shi, L.: Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene. Nano Lett. 11, 1195 (2011)

    Article  ADS  Google Scholar 

  68. Wang, Z., Xie, R., Bui, C.T., Liu, D., Ni, X., Li, B., Thong, J.T.L.: Thermal transport in suspended and supported few-layer graphene. Nano Lett. 11, 113 (2011)

    Article  ADS  Google Scholar 

  69. Murali, R., Yang, Y., Brenner, K., Beck, T., Meindl, J.D.: Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 94, 243114 (2009)

    Article  ADS  Google Scholar 

  70. Liao, A.D., Wu, J.Z., Wang, X., Tahy, K., Jena, D., Dai, H., Pop, E.: Thermally limited current carrying ability of graphene nanoribbons. Phys. Rev. Lett. 106, 256801 (2011)

    Article  ADS  Google Scholar 

  71. Maultzsch, J., Reich, S., Thomsen, C., Requardt, H., Ordejon, P.: Phonon dispersion in graphite. Phys. Rev. Lett. 92, 075501 (2004)

    Article  ADS  Google Scholar 

  72. Mounet, N., Marzari, N.: First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys. Rev. B 71, 205214 (2005)

    Article  ADS  Google Scholar 

  73. Wirtz, L., Rubio, A.: The phonon dispersion of graphite revisited. Solid State Commun. 131, 141 (2004)

    Article  ADS  Google Scholar 

  74. Falkovsky, L.A.: Symmetry constraints on phonon dispersion in graphene. Phys. Lett. A 372, 5189 (2008)

    Article  ADS  MATH  Google Scholar 

  75. Perebeinos, V., Tersoff, J.: Valence force model for phonons in graphene and carbon nanotubes. Phys. Rev. B 79, 241409(R) (2009)

    Google Scholar 

  76. Droth, M., Burkard, G.: Acoustic phonon and spin relaxation in graphene nanoribbons. Phys. Rev. B 84, 155404 (2011)

    Article  ADS  Google Scholar 

  77. Qian, J., Allen, M.J., Yang, Y., Dutta, M., Stroscio, M.A.: Quantized long-wavelength optical phonon modes in graphene nanoribbon in the elastic continuum model. Superlattice Microst. 46, 881 (2009)

    Article  ADS  Google Scholar 

  78. Alofi, A., Srivastva, G.P.: Phonon conductivity in graphene. J. Appl. Phys. 112, 013517 (2012)

    Article  ADS  Google Scholar 

  79. Yan, J.-A., Ruan, W.Y., Chou, M.Y.: Phonon dispersions and vibrational properties of monolayer, bilayer, and trilayer graphene: density-functional perturbation theory. Phys. Rev. B 77, 125401 (2008)

    Article  ADS  Google Scholar 

  80. Dubay, O., Kresse, G.: Accurate density functional calculations for the phonon dispersion relation of graphite layer and carbon nanotubes. Phys. Rev. B 67, 035401 (2003)

    Article  ADS  Google Scholar 

  81. Wang, H., Wang, Y., Cao, X., Feng, M., Lan, G.: Vibrational properties of graphene and graphene layers. J. Raman Spectrosc. 40, 1791 (2009)

    Article  ADS  Google Scholar 

  82. Lindsay, L., Broido, D.: Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B 81, 205441 (2010)

    Article  ADS  Google Scholar 

  83. Evans, W.J., Hu, L., Keblinsky, P.: Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination. Appl. Phys. Lett. 96, 203112 (2010)

    Article  ADS  Google Scholar 

  84. Zhang, H., Lee, G., Cho, K.: Thermal transport in graphene and effects of vacancies. Phys. Rev. B 84, 115460 (2011)

    Article  ADS  Google Scholar 

  85. Wei, Z., Ni, Z., Bi, K., Chen, M., Chen, Y.: In-plane lattice thermal conductivities of multilayer graphene films. Carbon 49, 2653 (2011)

    Article  Google Scholar 

  86. Ong, Z.-Y., Pop, E.: Effect of substrate modes on thermal transport in supported graphene. Phys. Rev. B 84, 075471 (2011)

    Article  ADS  Google Scholar 

  87. Wei, N., Xu, L., Wang, H.-Q., Zheng, J.-C.: Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility. Nanotechnology 22, 105705 (2011)

    Article  ADS  Google Scholar 

  88. Hao, F., Fang, D., Xu, Z.: Mechanical and thermal transport properties of graphene with defects. Appl. Phys. Lett. 99, 041901 (2011)

    Article  ADS  Google Scholar 

  89. Mortazavi, B., Ahzi, S.: Thermal conductivity and tensile response of defective graphene: A molecular dynamics study. Carbon 63, 460 (2013)

    Article  Google Scholar 

  90. Ng, T., Yeo, J.J., Liu, Z.S.: A molecular dynamics study of the thermal conductivity of graphene nanoribbons containing dispersed Stone–Thrower–Wales defects. Carbon 50, 4887 (2012)

    Article  Google Scholar 

  91. Jang, Y.Y., Cheng, Y., Pei, Q.X., Wang, C.W., Xiang, Y.: Thermal conductivity of defected graphene. Phys. Lett. A 376, 3668 (2012)

    Article  ADS  Google Scholar 

  92. Yeo, J.J., Liu, Z., Ng, T.Y.: Comparing the effects of dispersed Stone–Thrower–Wales defects and double vacancies on the thermal conductivity of graphene nanoribbons. Nanotechnology 23, 385702 (2012)

    Article  Google Scholar 

  93. Yang, D., Ma, F., Sun, Y., Hu, T., Xu, K.: Influence of typical defects on thermal conductivity of graphene nanoribbons: An equilibrium molecular dynamics simulation. Appl. Surf. Sci. 258, 9926 (2012)

    Article  ADS  Google Scholar 

  94. Park, M., Lee, S.C., Kim, Y.S.: Length-dependent thermal conductivity of graphene and its macroscopic limit. J. Appl. Phys. 114, 053506 (2013)

    Article  ADS  Google Scholar 

  95. Yu, C., Zhang, G.: Impacts of length and geometry deformation on thermal conductivity of graphene nanoribbons. J. Appl. Phys. 113, 044306 (2013)

    Article  ADS  Google Scholar 

  96. Cao, A.: Molecular dynamics simulation study on heat transport in monolayer graphene sheet with various geometries. J. Appl. Phys. 111, 083528 (2012)

    Article  ADS  Google Scholar 

  97. Cao, H.-Y., Guo, Z.-X., Xiang, H., Gong, Z.-G.: Layer and size dependence of thermal conductivity in multilayer graphene. Phys. Lett. A 373, 525 (2012)

    Article  ADS  Google Scholar 

  98. Cheng, L., Kumar, S.: Thermal transport in graphene supported copper. J. Appl. Phys. 112, 043502 (2012)

    Article  ADS  Google Scholar 

  99. Yeo, P.S.E., Loh, K.P., Gan, C.K.: Strain dependence of the heat transport properties of graphene nanoribbons. Nanotechnology 23, 495702 (2012)

    Article  Google Scholar 

  100. Ma, F., Zheng, H.B., Sun, Y.J., Yang, D., Xu, K.W., Chu, P.K.: Strain effect on lattice vibration, heat capacity, and thermal conductivity of graphene. Appl. Phys. Lett. 101, 111904 (2012)

    Article  ADS  Google Scholar 

  101. Huang, Z., Fisher, T.S., Murthy, J.Y.: Simulation of phonon transmission through graphene and graphene nanoribbons with a Green’s function method. J. Appl. Phys. 108, 094319 (2010)

    Article  ADS  Google Scholar 

  102. Zhai, X., Jin, G.: Stretching-enhanced ballistic thermal conductance in graphene nanoribbons. EPL 96, 16002 (2011)

    Article  ADS  Google Scholar 

  103. Aksamija, Z., Knezevic, I.: Lattice thermal conductivity of graphene nanoribbons: anisotropy and edge roughness scattering. Appl. Phys. Lett. 98, 141919 (2011)

    Article  ADS  Google Scholar 

  104. Klemens, P.G., Pedraza, D.F.: Thermal conductivity of graphite in basal plane. Carbon 32, 735 (1994)

    Article  Google Scholar 

  105. Adamyan, V., Zavalniuk, V.: Lattice thermal conductivity of graphene with conventionally isotopic defects. J. Phys. Cond. Matter. 24, 415406 (2012)

    Article  Google Scholar 

  106. Aksamija, Z., Knezevic, I.: Thermal transport in graphene nanoribbons supported on SiO2. Phys. Rev. B 86, 165426 (2012)

    Article  ADS  Google Scholar 

  107. Savin, A.V., Kivshar, Y.S., Hu, B.: Suppression of thermal conductivity in graphene nanoribbons with rough edges. Phys. Rev. B 82, 195422 (2010)

    Article  ADS  Google Scholar 

  108. Hu, J., Ruan, X., Chen, Y.P.: Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamic study. Nano Lett. 9, 2730 (2009)

    Article  ADS  Google Scholar 

  109. Guo, Z., Zhang, D., Gong, X.-G.: Thermal conductivity of graphene nanoribbons. Appl. Phys. Lett. 95, 163103 (2009)

    Article  ADS  Google Scholar 

  110. Ouyang, T., Chen, Y.P., Yang, K.K., Zhong, J.X.: Thermal transport of isotopic-superlattice graphene nanoribbons with zigzag edge. EPL 88, 28002 (2009)

    Article  ADS  Google Scholar 

  111. Chen, S., Wu, Q., Mishra, C., Kang, J., Zhang, H., Cho, K., Cai, W., Balandin, A.A., Ruoff, R.S.: Thermal conductivity of isotopically modified graphene. Nature Mater. 11, 203 (2012)

    Article  ADS  Google Scholar 

  112. Jiang, J.W., Lan, J.H., Wang, J.S., Li, B.W.: Isotopic effects on the thermal conductivity of graphene nanoribbons: localization mechanism. J. Appl. Phys. 107, 054314 (2010)

    Article  ADS  Google Scholar 

  113. Zhang, H., Lee, G., Fonseca, A.F., Borders, T.L., Cho, K.: Isotope effect on the thermal conductivity of graphene. J. Nanomater. 53, 7657 (2010)

    Google Scholar 

  114. Hu, J., Schiffli, S., Vallabhaneni, A., Ruan, X., Chen, Y.P.: Tuning the thermal conductivity of graphene nanoribbons by edge passivation and isotope engineering: a molecular dynamics study. Appl. Phys. Lett. 97, 133107 (2010)

    Article  ADS  Google Scholar 

  115. Jinag, J.-W., Wang, B.-S., Wang, J.-S.: First principle study of the thermal conductance in graphene nanoribbon with vacancy and substitutional silicon defects. Appl. Phys. Lett. 98, 113114 (2011)

    Article  ADS  Google Scholar 

  116. Hu, J., Wang, Y., Vallabhaneni, A., Ruan, X., Chen, Y.: Nonlinear thermal transport and negative differential thermal conductance in graphene nanoribbons. Appl. Phys. Lett. 99, 113101 (2011)

    Article  ADS  Google Scholar 

  117. Xie, Z.-X., Chen, K.-Q., Duan, W.: Thermal transport by phonons in zigzag graphene nanoribbons with structural defects. J. Phys. Cond. Matter 23, 315302 (2011)

    Article  ADS  Google Scholar 

  118. Wemhoff, A.P.: A review of theoretical techniques for graphene and graphene nanoribbon thermal conductivity prediction Int. J. Transp. Phenom. 13, 121 (2012)

    Google Scholar 

  119. Lindsay, L., Broido, D.A., Mingo, N.: Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit. Phys. Rev. B 82, 161402 (2010)

    Article  ADS  Google Scholar 

  120. Alofi, A., Srivastava, G.P.: Thermal conductivity of graphene and graphite. Phys. Rev. B 87, 115421 (2013)

    Article  ADS  Google Scholar 

  121. Munoz, E., Lu, J., Yakobson, B.I.: Ballistic thermal conductance of graphene ribbons. Nano Lett. 10, 1652 (2010)

    Article  ADS  Google Scholar 

  122. Jiang, J.-W., Wang, J.-S., Li, B.: Thermal conductance of graphite and dimerite. Phys. Rev. B 79, 205418 (2009)

    Article  ADS  Google Scholar 

  123. Lindsay, L., Li, W., Carrete, J., Mingo, N., Broido, D.A., Reinecke, T.L.: Phonon thermal transport in strained and unstrained graphene from first principles. Phys. Rev. B 89, 155426 (2015)

    Article  ADS  Google Scholar 

  124. Barbarino, G., Melis, C., Colombo, L.: Intrinsic thermal conductivity in monolayer graphene is ultimately upper limit. Phys. Rev. B 91, 035416 (2015)

    Google Scholar 

  125. Kim, P., Shi, L., Majumdar, A., Mc Euen, P.L.: Thermal transport measurement of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001)

    Article  ADS  Google Scholar 

  126. Lippi, A., Livi, R.: Heat conduction in two-dimensional nonlinear lattices. J. Stat. Phys. 100, 1147 (2000)

    Article  MATH  Google Scholar 

  127. Yang, L.: Finite heat conductance in a 2D disorder lattice. Phys. Rev. Lett. 88, 094301 (2002)

    Article  ADS  Google Scholar 

  128. Dhar, A.: Heat conduction in the disordered harmonic chain revisited. Phys. Rev. Lett. 86, 5882 (2001)

    Article  ADS  Google Scholar 

  129. Casher, A., Lebowitz, J.L.: Heat flow in regular and disordered harmonic chains. J. Math. Phys. 12, 1701 (1971)

    Article  ADS  Google Scholar 

  130. Ecsedy, D.J., Klemens, P.G.: Thermal resistivity of dielectric crystals due to 4-phonon processes and optical modes. Phys. Rev. B 15, 5957 (1977)

    Article  ADS  Google Scholar 

  131. Mingo, N., Broido, D.: Length dependence of carbon nanotube thermal conductivity and “the problem of long waves”. Nano Lett. (5) 1221 (2005)

    Google Scholar 

  132. Klemens, P.G.: Theory of thermal conduction in the ceramic films. Int. J. Thermophys. 22, 265 (2001)

    Google Scholar 

  133. Kelly, B.T.: Physics of Graphite. Applied Science Publishers, London (1981)

    Google Scholar 

  134. Kong, B.D., Paul, S., Nardelli, M.B., Kim, K.W.: First-principles analysis of lattice thermal conductivity in monolayer and bilayer graphene. Phys. Rev. B 80, 033406 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work at UC Riverside was supported, in part, by the National Science Foundation (NSF) project CMMI-1404967 Collaborative Research Genetic Algorithm Driven Hybrid Computational Experimental Engineering of Defects in Designer Materials; NSF project ECCS-1307671 Two-Dimensional Performance with Three-Dimensional Capacity: Engineering the Thermal Properties of Graphene, and by the STARnet Center for Function Accelerated nanoMaterial Engineering (FAME)—Semiconductor Research Corporation (SRC) program sponsored by The Microelectronics Advanced Research Corporation (MARCO) and the Defense Advanced Research Project Agency (DARPA). The work at Moldova State University was supported, in part, by the Moldova State Project 15.817.02.29 F and ASM-STCU project #5937.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Balandin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nika, D.L., Balandin, A.A. (2016). Thermal Transport in Graphene, Few-Layer Graphene and Graphene Nanoribbons. In: Lepri, S. (eds) Thermal Transport in Low Dimensions. Lecture Notes in Physics, vol 921. Springer, Cham. https://doi.org/10.1007/978-3-319-29261-8_9

Download citation

Publish with us

Policies and ethics