Skip to main content

Heat Transport in Low Dimensions: Introduction and Phenomenology

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 921))

Abstract

In this chapter we introduce some of the basic models and concepts that will be discussed throughout the volume. In particular we describe systems of nonlinear oscillators arranged on low-dimensional lattices and summarize the phenomenology of their transport properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For historical reasons two of the scaling exponents introduced in this section are conventionally denoted by the same Greek letters, α and β, adopted for the FPU models described in Sect. 1.2.

  2. 2.

    From the mathematical point of view, the existence of a unique stationary measure is a relevant question and has been proven in some specific cases models of this class, see the review [8, 28, 29].

  3. 3.

    Temperature discontinuities may appear at the chain boundaries. This is a manifestation of the well-known Kapitza resistance, the temperature discontinuity arising when a heat flux is maintained across an interface among two substances. This discontinuity is the result of a boundary resistance, that is explained as a “phonon mismatch” between the two media: see [2] for a discussion of the class of models at hand.

  4. 4.

    In fact, the quadratic kernel corresponds to a quadratic force originating from the leading cubic nonlinearity of any asymmetric interaction potential, while a quartic leading nonlinearity of a symmetric interaction potential yields a cubic kernel (force).

References

  1. Aoki, K., Kusnezov, D.: Bulk properties of anharmonic chains in strong thermal gradients: non-equilibrium ϕ 4 theory. Phys. Lett. A 265(4), 250 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Aoki, K., Kusnezov, D.: Fermi-Pasta-Ulam β model: boundary jumps, Fourier’s law, and scaling. Phys. Rev. Lett. 86(18), 4029–4032 (2001)

    Article  ADS  Google Scholar 

  3. Barabási, A.L., Stanley, H.E.: Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  4. Basile, G., Bernardin, C., Olla, S.: Momentum conserving model with anomalous thermal conductivity in low dimensional systems. Phys. Rev. Lett. 96, 204303 (2006)

    Article  ADS  Google Scholar 

  5. Basile, G., Delfini, L., Lepri, S., Livi, R., Olla, S., Politi, A.: Anomalous transport and relaxation in classical one-dimensional models. Eur. Phys. J.: Spec. Top. 151, 85–93 (2007)

    Google Scholar 

  6. Basko, D.: Weak chaos in the disordered nonlinear Schrödinger chain: destruction of Anderson localization by Arnold diffusion. Ann. Phys. 326(7), 1577–1655 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Blumen, A., Zumofen, G., Klafter, J.: Transport aspects in anomalous diffusion: Lévy walks. Phys. Rev. A 40(7), 3964–3973 (1989)

    Article  ADS  Google Scholar 

  8. Bonetto, F., Lebowitz, J.L., Rey-Bellet, L.: Fourier’s law: a challenge to theorists. In: Fokas, A., Grigoryan, A., Kibble, T., Zegarlinsky, B. (eds.) Mathematical Physics 2000, p. 128. Imperial College, London (2000)

    Google Scholar 

  9. Casati, G.: Energy transport and the Fourier heat law in classical systems. Found. Phys. 16(1), 51–61 (1986)

    Article  ADS  Google Scholar 

  10. Casati, G., Prosen, T.: Anomalous heat conduction in a one-dimensional ideal gas. Phys. Rev. E 67(1), 015203 (2003)

    Article  ADS  Google Scholar 

  11. Casati, G., Ford, J., Vivaldi, F., Visscher, W.M.: One-dimensional classical many-body system having a normal thermal conductivity. Phys. Rev. Lett. 52(21), 1861–1864 (1984)

    Article  ADS  Google Scholar 

  12. Casati, G., Mejía-Monasterio, C., Prosen, T.: Increasing thermoelectric efficiency: a dynamical systems approach. Phys. Rev. Lett. 101(1), 016601 (2008). doi:10.1103/PhysRevLett.101.016601

    Article  ADS  Google Scholar 

  13. Casati, G., Wang, L., Prosen, T.: A one-dimensional hard-point gas and thermoelectric efficiency. J. Stat. Mech.: Theory Exp. 2009(03), L03004 (2009)

    Google Scholar 

  14. Chang, C.W., Okawa, D., Garcia, H., Majumdar, A., Zettl, A.: Breakdown of Fourier’s law in nanotube thermal conductors. Phys. Rev. Lett. 101(7), 075903 (2008). doi:10.1103/PhysRevLett.101.075903

    Article  ADS  Google Scholar 

  15. Cipriani, P., Denisov, S., Politi, A.: From anomalous energy diffusion to Lévy walks and heat conductivity in one-dimensional systems. Phys. Rev. Lett. 94(24), 244301 (2005)

    Article  ADS  Google Scholar 

  16. Das, S., Dhar, A., Narayan, O.: Heat conduction in the α-β Fermi-Pasta-Ulam chain. J. Stat. Phys. 154(1–2), 204–213 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Das, S.G., Dhar, A., Saito, K., Mendl, C.B., Spohn, H.: Numerical test of hydrodynamic fluctuation theory in the Fermi-Pasta-Ulam chain. Phys. Rev. E 90(1), 012124 (2014)

    Article  ADS  Google Scholar 

  18. Delfini, L., Lepri, S., Livi, R.: A simulation study of energy transport in the Hamiltonian XY model. J. Stat. Mech.: Theory Exp. 2005, P05006 (2005)

    Google Scholar 

  19. Delfini, L., Lepri, S., Livi, R., Politi, A.: Self-consistent mode-coupling approach to one-dimensional heat transport. Phys. Rev. E 73(6), 060201(R) (2006)

    Google Scholar 

  20. Delfini, L., Denisov, S., Lepri, S., Livi, R., Mohanty, P.K., Politi, A.: Energy diffusion in hard-point systems. Eur. Phys. J.: Spec. Top. 146, 21–35 (2007)

    Google Scholar 

  21. Delfini, L., Lepri, S., Livi, R., Politi, A.: Anomalous kinetics and transport from 1D self-consistent mode-coupling theory. J. Stat. Mech.: Theory Exp. 2007, P02007 (2007)

    Google Scholar 

  22. Delfini, L., Lepri, S., Livi, R., Politi, A.: Comment on “equilibration and universal heat conduction in Fermi-Pasta-Ulam chains”. Phys. Rev. Lett. 100(19), 199401 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  23. Delfini, L., Lepri, S., Livi, R., Politi, A.: Nonequilibrium invariant measure under heat flow. Phys. Rev. Lett. 101(12), 120604 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Denisov, S., Klafter, J., Urbakh, M.: Dynamical heat channels. Phys. Rev. Lett. 91(19), 194301 (2003)

    Article  ADS  Google Scholar 

  25. Denisov, S., Zaburdaev, V., Hänggi, P.: Lévy walks with velocity fluctuations. Phys. Rev. E 85(3), 031148 (2012)

    Article  ADS  Google Scholar 

  26. Dhar, A.: Heat transport in low-dimensional systems. Adv. Phys. 57, 457–537 (2008)

    Article  ADS  Google Scholar 

  27. Dhar, A., Saito, K., Derrida, B.: Exact solution of a Lévy walk model for anomalous heat transport. Phys. Rev. E 87, 010103 (2013)

    Article  ADS  Google Scholar 

  28. Eckmann, J.P., Hairer, M.: Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators. Commun. Math. Phys. 212(1), 105–164 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Eckmann, J.P., Pillet, C.A., Rey-Bellet, L.: Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures. Commun. Math. Phys. 201, 657 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Eilbeck, J.C., Lomdahl, P.S., Scott, A.C.: The discrete self-trapping equation. Physica D 16, 318–338 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Eleftheriou, M., Lepri, S., Livi, R., Piazza, F.: Stretched-exponential relaxation in arrays of coupled rotators. Physica D 204(3), 230–239 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Fermi, E., Pasta, J., Ulam, S.: Studies of nonlinear problems. Los Alamos Report LA-1940, p. 978 (1955)

    MATH  Google Scholar 

  33. Flach, S., Miroshnichenko, A., Fistul, M.: Wave scattering by discrete breathers. Chaos 13(2), 596–609 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Flaschka, H.: The toda lattice. II. Existence of integrals. Phys. Rev. B 9(4), 1924 (1974)

    MathSciNet  MATH  Google Scholar 

  35. Franzosi, R.: Microcanonical entropy and dynamical measure of temperature for systems with two first integrals. J. Stat. Phys. 143, 824–830 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Gendelman, O.V., Savin, A.V.: Normal heat conductivity of the one-dimensional lattice with periodic potential of nearest-neighbor interaction. Phys. Rev. Lett. 84(11), 2381–2384 (2000)

    Article  ADS  Google Scholar 

  37. Gendelman, O., Savin, A.: Normal heat conductivity in chains capable of dissociation. Europhys. Lett. 106(3), 34004 (2014)

    Article  ADS  Google Scholar 

  38. Giardiná, C., Livi, R., Politi, A., Vassalli, M.: Finite thermal conductivity in 1D lattices. Phys. Rev. Lett. 84(10), 2144–2147 (2000)

    Article  ADS  Google Scholar 

  39. Gillan, M., Holloway, R.: Transport in the Frenkel-Kontorova model 3: thermal-conductivity. J. Phys. C 18(30), 5705–5720 (1985)

    Article  ADS  Google Scholar 

  40. Grassberger, P., Nadler, W., Yang, L.: Heat conduction and entropy production in a one-dimensional hard-particle gas. Phys. Rev. Lett. 89(18), 180601 (2002)

    Article  ADS  Google Scholar 

  41. Hatano, T.: Heat conduction in the diatomic toda lattice revisited. Phys. Rev. E 59, R1–R4 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  42. Helfand, E.: Transport coefficients from dissipation in a canonical ensemble. Phys. Rev. 119(1), 1–9 (1960). doi:10.1103/PhysRev.119.1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Hénon, M.: Integrals of the Toda lattice. Phys. Rev. B 9(4), 1921 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Hu, B., Li, B., Zhao, H.: Heat conduction in one-dimensional chains. Phys. Rev. E 57(3), 2992 (1998)

    Article  ADS  Google Scholar 

  45. Hurtado, P.I., Garrido, P.L.: Violation of universality in anomalous Fourier’s law (2015). arXiv preprint arXiv:1506.03234

    Google Scholar 

  46. Iacobucci, A., Legoll, F., Olla, S., Stoltz, G.: Negative thermal conductivity of chains of rotors with mechanical forcing. Phys. Rev. E 84(6), 061108 (2011)

    Article  ADS  Google Scholar 

  47. Iubini, S., Lepri, S., Politi, A.: Nonequilibrium discrete nonlinear Schrödinger equation. Phys. Rev. E 86(1), 011108 (2012)

    Article  ADS  Google Scholar 

  48. Iubini, S., Lepri, S., Livi, R., Politi, A.: Off-equilibrium Langevin dynamics of the discrete nonlinear Schrödinger chain. J. Stat. Mech.: Theory Exp. 2013(08), P08017 (2013)

    Google Scholar 

  49. Iubini, S., Lepri, S., Livi, R., Politi, A.: Boundary-induced instabilities in coupled oscillators. Phys. Rev. Lett. 112, 134101 (2014)

    Article  ADS  Google Scholar 

  50. Kaburaki, H., Machida, M.: Thermal-conductivity in one-dimensional lattices of Fermi-Pasta-Ulam type. Phys. Lett. A 181(1), 85–90 (1993)

    Article  ADS  Google Scholar 

  51. Kevrekidis, P.G.: The Discrete Nonlinear Schrödinger Equation. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  52. Klafter, J., Blumen, A., Shlesinger, M.F.: Stochastic pathway to anomalous diffusion. Phys. Rev. A 35(7), 3081–3085 (1987). doi:10.1103/PhysRevA.35.3081

    Article  ADS  MathSciNet  Google Scholar 

  53. Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II. Springer Series in Solid State Sciences, vol. 31. Springer, Berlin (1991)

    Google Scholar 

  54. Larralde, H., Leyvraz, F., Mejía-Monasterio, C.: Transport properties of a modified Lorentz gas. J. Stat. Phys. 113, 197–231 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  55. Lee-Dadswell, G.: Universality classes for thermal transport in one-dimensional oscillator systems. Phys. Rev. E 91(3), 032102 (2015)

    Article  ADS  Google Scholar 

  56. Lee-Dadswell, G.R.: Predicting and identifying finite-size effects in current spectra of one-dimensional oscillator chains. Phys. Rev. E 91, 012138 (2015)

    Article  ADS  Google Scholar 

  57. Lee-Dadswell, G.R., Nickel, B.G., Gray, C.G.: Thermal conductivity and bulk viscosity in quartic oscillator chains. Phys. Rev. E 72(3), 031202 (2005)

    Article  ADS  Google Scholar 

  58. Lee-Dadswell, G.R., Nickel, B.G., Gray, C.G.: Detailed examination of transport coefficients in cubic-plus-quartic oscillator chains. J. Stat. Phys. 132(1), 1–33 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Lee-Dadswell, G., Turner, E., Ettinger, J., Moy, M.: Momentum conserving one-dimensional system with a finite thermal conductivity. Phys. Rev. E 82(6), 061118 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  60. Lepri, S.: Relaxation of classical many-body Hamiltonians in one dimension. Phys. Rev. E 58(6), 7165–7171 (1998)

    Article  ADS  Google Scholar 

  61. Lepri, S., Politi, A.: Density profiles in open superdiffusive systems. Phys. Rev. E 83(3), 030107 (2011)

    Article  ADS  Google Scholar 

  62. Lepri, S., Livi, R., Politi, A.: Heat conduction in chains of nonlinear oscillators. Phys. Rev. Lett. 78(10), 1896–1899 (1997)

    Article  ADS  Google Scholar 

  63. Lepri, S., Livi, R., Politi, A.: On the anomalous thermal conductivity of one-dimensional lattices. Europhys. Lett. 43(3), 271–276 (1998)

    Article  ADS  Google Scholar 

  64. Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  65. Lepri, S., Livi, R., Politi, A.: Universality of anomalous one-dimensional heat conductivity. Phys. Rev. E 68(6, Pt 2), 067102 (2003). doi:10.1103/PhysRevE.68.067102

  66. Lepri, S., Sandri, P., Politi, A.: The one-dimensional Lennard-Jones system: collective fluctuations and breakdown of hydrodynamics. Eur. Phys. J. B 47(4), 549–555 (2005)

    Article  ADS  Google Scholar 

  67. Lepri, S., Mejía-Monasterio, C., Politi, A.: Stochastic model of anomalous heat transport. J. Phys. A: Math. Theor. 42, 025001 (2009)

    Article  ADS  MATH  Google Scholar 

  68. Lippi, A., Livi, R.: Heat conduction in two-dimensional nonlinear lattices. J. Stat. Phys. 100(5–6), 1147–1172 (2000)

    Article  MATH  Google Scholar 

  69. Liu, S., Hänggi, P., Li, N., Ren, J., Li, B.: Anomalous heat diffusion. Phys. Rev. Lett. 112(4), 040601 (2014)

    Article  ADS  Google Scholar 

  70. Lukkarinen, J., Spohn, H.: Anomalous energy transport in the FPU-β chain. Commun. Pure Appl. Math. 61(12), 1753–1786 (2008). doi:http://dx.doi.org/10.1002/cpa.20243

    Google Scholar 

  71. Mareschal, M., Amellal, A.: Thermal-conductivity in a one-dimensional Lennard-Jones chain by molecular-dynamics. Phys. Rev. A 37(6), 2189–2196 (1988)

    Article  ADS  Google Scholar 

  72. Maruyama, S.: A molecular dynamics simulation of heat conduction in finite length SWNTs. Physica B: Condens. Matter 323(1), 193–195 (2002)

    Article  ADS  Google Scholar 

  73. Mazur, P.: Non-ergodicity of phase functions in certain systems. Physica 43(4), 533–545 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  74. Meier, T., Menges, F., Nirmalraj, P., Hölscher, H., Riel, H., Gotsmann, B.: Length-dependent thermal transport along molecular chains. Phys. Rev. Lett. 113(6), 060801 (2014)

    Article  ADS  Google Scholar 

  75. Mejía-Monasterio, C., Larralde, H., Leyvraz, F.: Coupled normal heat and matter transport in a simple model system. Phys. Rev. Lett. 86(24), 5417–5420 (2001)

    Article  ADS  Google Scholar 

  76. Nakazawa, H.: On the lattice thermal conduction. Prog. Theor. Phys. Suppl. 45, 231–262 (1970)

    Article  ADS  Google Scholar 

  77. Narayan, O., Ramaswamy, S.: Anomalous heat conduction in one-dimensional momentum-conserving systems. Phys. Rev. Lett. 89(20), 200601 (2002)

    Article  ADS  Google Scholar 

  78. Nickel, B.: The solution to the 4-phonon Boltzmann equation for a 1D chain in a thermal gradient. J. Phys. A-Math. Gen. 40(6), 1219–1238 (2007). doi:10.1088/1751-8113/40/6/003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. Payton, D., Rich, M., Visscher, W.: Lattice thermal conductivity in disordered harmonic and anharmonic crystal models. Phys. Rev. 160(3), 706 (1967)

    Article  ADS  Google Scholar 

  80. Pereverzev, A.: Fermi-Pasta-Ulam β lattice: Peierls equation and anomalous heat conductivity. Phys. Rev. E 68(5), 056124 (2003). doi:10.1103/PhysRevE.68.056124

    Article  ADS  MathSciNet  Google Scholar 

  81. Politi, A.: Heat conduction of the hard point chain at zero pressure. J. Stat. Mech.: Theory Exp. 2011, P03028 (2011)

    Google Scholar 

  82. Pomeau, Y., Résibois, P.: Time dependent correlation functions and mode-mode coupling theories. Phys. Rep. 19(2), 63–139 (1975)

    Article  ADS  Google Scholar 

  83. Rugh, H.H.: Dynamical approach to temperature. Phys. Rev. Lett. 78(5), 772 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  84. Saito, K., Benenti, G., Casati, G.: A microscopic mechanism for increasing thermoelectric efficiency. Chem. Phys. 375, 508–513 (2010)

    Article  ADS  Google Scholar 

  85. Savin, A.V., Kosevich, Y.A.: Thermal conductivity of molecular chains with asymmetric potentials of pair interactions. Phys. Rev. E 89(3), 032102 (2014)

    Article  ADS  Google Scholar 

  86. Scheipers, J., Schirmacher, W.: Mode-coupling theory for the lattice dynamics of anharmonic crystals: self-consistent damping and the 1D Lennard-Jones chain. Z. für Phys. B Condens. Matter 103(3), 547–553 (1997)

    Article  ADS  Google Scholar 

  87. Schilling, R.: Theories of the structural glass transition. In: Collective Dynamics of Nonlinear and Disordered Systems, pp. 171–202. Springer, Berlin (2005)

    Google Scholar 

  88. Spohn, H.: Nonlinear fluctuating hydrodynamics for anharmonic chains. J. Stat. Phys. 154(5), 1191–1227 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. van Beijeren, H.: Exact results for anomalous transport in one-dimensional hamiltonian systems. Phys. Rev. Lett. 108, 180601 (2012)

    Article  Google Scholar 

  90. Wang, L., Hu, B., Li, B.: Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices. Phys. Rev. E 86, 040101 (2012)

    Article  ADS  Google Scholar 

  91. Wang, L., Hu, B., Li, B.: Validity of fourier’s law in one-dimensional momentum-conserving lattices with asymmetric interparticle interactions. Phys. Rev. E 88, 052112 (2013)

    Article  ADS  Google Scholar 

  92. Yang, L., Hu, B.: Comment on “normal heat conductivity of the one-dimensional lattice with periodic potential of nearest-neighbor interaction”. Phys. Rev. Lett. 94, 219404 (2005)

    Article  ADS  Google Scholar 

  93. Yang, L., Grassberger, P., Hu, B.: Dimensional crossover of heat conduction in low dimensions. Phys. Rev. E 74(6), 062101 (2006)

    Article  ADS  Google Scholar 

  94. Zaburdaev, V., Denisov, S., Hänggi, P.: Perturbation spreading in many-particle systems: a random walk approach. Phys. Rev. Lett. 106(18), 180601 (2011)

    Article  ADS  Google Scholar 

  95. Zaburdaev, V., Denisov, S., Klafter, J.: Lévy walks. Rev. Mod. Phys. 87(2), 483 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  96. Zhao, H.: Identifying diffusion processes in one-dimensional lattices in thermal equilibrium. Phys. Rev. Lett. 96(14), 140602 (2006)

    Article  ADS  Google Scholar 

  97. Zhong, Y., Zhang, Y., Wang, J., Zhao, H.: Normal heat conduction in one-dimensional momentum conserving lattices with asymmetric interactions. Phys. Rev. E 85, 060102 (2012)

    Article  ADS  Google Scholar 

  98. Zoia, A., Rosso, A., Kardar, M.: Fractional Laplacian in bounded domains. Phys. Rev. E 76(2), 21116 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  99. Zotos, X.: Ballistic transport in classical and quantum integrable systems. J. Low Temp. Phys. 126(3–4), 1185–1194 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We wish to thank L. Delfini and S. Iubini for their effective contribution to the achievement of several results summarized in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Lepri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lepri, S., Livi, R., Politi, A. (2016). Heat Transport in Low Dimensions: Introduction and Phenomenology. In: Lepri, S. (eds) Thermal Transport in Low Dimensions. Lecture Notes in Physics, vol 921. Springer, Cham. https://doi.org/10.1007/978-3-319-29261-8_1

Download citation

Publish with us

Policies and ethics