Skip to main content

Optimizing the Connection Time for LEO Satellite Based on Dynamic Sensor Field

  • Conference paper
  • First Online:
Context-Aware Systems and Applications (ICCASA 2015)

Included in the following conference series:

Abstract

In this paper, we propose a new approach to optimize the connection time for Low Earth Orbit (LEO) satellite based on dynamic sensor field. A dynamic sensor field is a long range sensor network that is able to redefine the gateway for extension communication time with LEO satellite to adapt with the shift of the satellite’s ground track at each revolution. The model for optimization comprises the parameters of both ground and space segment. The experimental results are performed on two sensor field deployments which aim at optimizing the connection time for successful communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lucas, P.-Y., Van Long, N.H., Truong, T.P., Pottier, B.: Wire-less sensor networks and satellite simulation. In: 7th EAI International Conference onWireless and Satellite Systems (WiSATS 2015), Bradford, United Kingdom (2015)

    Google Scholar 

  2. Àlvarez, C., Duch, A., Gabarro, J., Serna, M.: Sensor field: a computational model. In: Dolev, S. (ed.) ALGOSENSORS 2009. LNCS, vol. 5804, pp. 3–14. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Cakaj, S., Fischer, M., Scholtz, A.L.: Practical horizon plane for low earth orbiting (LEO) satellite ground stations. In: TELE-INFO 2009 Proceedings of the 8th WSEAS International Conference on Telecommunications and Informatics, pp. 62–67. ACM Digital Library (2009)

    Google Scholar 

  4. Celandroni, N., et al.: A survey of architectures and scenarios in satellite-based wireless sensor networks: system design aspects. Int. J. Satell. Commun. Network. 31(1), 1–38 (2013). Wiley

    Article  Google Scholar 

  5. Cakaj, S., Kamo, B., Lala, A., Rakipi, A.: The coverage analysis for low earth orbiting satellites at low elevation. Int. J. Adv. Comput. Sci. Appl.(ijacsa), 5(6) (2014)

    Google Scholar 

  6. Cakaj, Sh., Keim, W., Malaric, K.: Communication duration with low earth orbiting satellites. In: Proceedings of IEEE, IASTED, 4th International Conference on Antennas, Radar and Wave Propagation, Montreal, pp. 85–88 (2007)

    Google Scholar 

  7. Bayat, D., Habibi, D., Ahmad, I.: Development of a wireless sensor node for environmental monitoring. In: The Sixth International Conference on Sensor Technologies and Applications (SENSORCOMM), pp. 1–5. International Academy, Research, and Industry Association (IARIA) (2012)

    Google Scholar 

  8. UK High Altitude Society. http://www.instructables.com/id/Introducing-LoRa-/step19/LoRa-receiver-links/

  9. Pottier, B., Lucas, P.-Y.: Dynamic networks NetGen: objectives, installation, use, and programming. Technical report, Universit de Bretagne Occidentale, France (2014)

    Google Scholar 

  10. Alexandru Csete, GPredict project. http://gpredict.oz9aec.net/

  11. Google Maps services, the map of Vietnam. https://www.google.fr/maps/place/Vietnam/@15.9030623,105.8066791,6z/data=!3m1!4b1!4m2!3m1!1s0x31157a4d736a1e5f:0xb03bb0c9e2fe62be

    Google Scholar 

  12. Berlin Experimental and Educational Satellite-2 and -3. https://directory.eoportal.org/web/eoportal/satellite-missions/b/beesat-2-3

  13. Cakaj, S.: Elevation variation with low earth orbiting search and rescue satellites for the station implemented in kosovo. Univers. J. Commun. Netw. 1, 32–37 (2013). Horizon Research Publishing

    Google Scholar 

  14. Eaton, J.W.: GNU Octave 4.0.0. (2015). https://www.gnu.org/software/octave/

  15. Dosiere, F., Zein, T., Maral, G., Boutes, J.P.: A model for the handover traffic in low earth-orbiting (LEO) satellite networks for personal communications. Int. J. Satell. Commun. pp. 574–578 (1993)

    Google Scholar 

  16. Fernandez Del Rio, J.E., Nubla, A., Bustamante, L., Van’t Klooster, K: SOPERA: a new antenna concept for low Earth orbit satellites. In: Antennas and Propagation Society International Symposium, pp. 688–691. IEEE Press (1999)

    Google Scholar 

  17. Sreeja, T.K., Arun, A., Jaya Kumari, J.: An: S-Band Micro-strip Patch Array Antenna for nano-satellite applications. In: International Conference on Green Technologies (ICGT), pp. 325–328 (2012)

    Google Scholar 

  18. Abdi, B., Alimardani, A., Ghasemi, R., Mirtalaei, S.M.M.: Energy storage selection for LEO satellites. Int. J. Mach. Learn. Comput. 3(3), 287–290 (2013)

    Article  Google Scholar 

  19. Larson, W.J., Wertz, J.R.: Chapter 5: Space Mission Geometry. Space Mission Analysis and Design, 3rd edn, pp. 95–230. Microcosm Press, El Segundo (2003)

    Google Scholar 

  20. Muri, P., McNair, J.: A survey of communication sub-systems for intersatellite linked systems and CubeSat missions. J. Commun. 7(4), 290–308 (2012)

    Article  Google Scholar 

  21. Chowdhury, P.K., Atiquzzaman, M., Ivancic, W.: Handover Schemes in Satellite Networks: State-of-the-Art and Future Research Directions. Communications Surveys & Tutorials, 8(4). IEEE express (2006) Signal Processing and Communications Perspectives, pp. 277–309. John Wiley & Sons Ltd (2207)

    Google Scholar 

  22. Capderou, M.: Chapter 8- Ground track of a statellite. Handbook of satellite orbits from Kepler to GPS, pp. 301–338. Springer International Publishing Switzerland (2014)

    Google Scholar 

  23. Tan, P.-N., Steinbach, M., Kumar, V.: Chapter 6 Association Analysis: Basic Concepts and Algorithms. Introduction to Data Mining, pp. 327–413. Addison-Wesley Longman Publishing Co., Inc., Boston (2005)

    Google Scholar 

Download references

Acknowledgment

The author gratefully acknowledges the MOET-VIED (Ministry of Education and Training - Vietnam International Education Development) of the Vietnam Government for awarding a scholarship to the first author of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuyen Phong Truong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Truong, T.P., Van Tran, H., Huynh, H.X., Pottier, B. (2016). Optimizing the Connection Time for LEO Satellite Based on Dynamic Sensor Field. In: Vinh, P., Alagar, V. (eds) Context-Aware Systems and Applications. ICCASA 2015. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 165. Springer, Cham. https://doi.org/10.1007/978-3-319-29236-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29236-6_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29235-9

  • Online ISBN: 978-3-319-29236-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics