Skip to main content

Antibiotic Resistance in Endophthalmitis Pathogens

  • Chapter
  • First Online:
Endophthalmitis

Abstract

Resistance to antimicrobial agents used to treat human infections is a major public health threat that results from the broad use of antibiotics in medicine, veterinary care, and agriculture. Exposure to antibiotics promotes the selection of successful resistant bacterial lineages possessing molecular mechanisms that lead to variable levels of resistance. Increasing use of antibiotics for treatment and prophylaxis of eye infections has resulted in the emergence of resistant ocular organisms. The use of topical antibiotics for prophylaxis of postoperative endophthalmitis, especially fluoroquinolones, has paralleled the recent increase in the number of patients undergoing intraocular procedures. This has resulted in the upsurge of antibiotic-resistant organisms colonizing the ocular microbiota and also as significant causes of postoperative infections. Contemporary ocular staphylococci isolates, the leading causes of bacterial endophthalmitis, are becoming increasingly resistant to the most commonly used topical fluoroquinolone agents. Despite the widespread use of these agents for prophylaxis, current evidence does not support the efficacy of topical fluoroquinolones in preventing endophthalmitis, but does support an association with their use and the selection of spontaneous resistant mutants in the ocular surface microbiota. Studies of pharmacokinetics and pharmacodynamics have demonstrated that due to reduced penetration in association with increasing levels of resistance, none of the currently used topical fluoroquinolones are likely to be effective in eliminating staphylococci isolates in the anterior chamber. This highlights the need for prospective randomized studies to evaluate whether or not these topical antibiotics are really needed for preventing postoperative or post-injection endophthalmitis. The development of new strategies to increase regimens or delivery mechanisms that would optimize the intraocular concentration of antibiotics may help prevent the selection and spread of resistant mutants and improve clinical effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. Antimicrobial resistance: global report on surveillance. 2014. http://www.who.int/drugresistance/documents/surveillancereport/en/. Accessed 28 May 2015.

  2. Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res. 2005;36(6):697–705.

    Article  PubMed  Google Scholar 

  3. Livermore DM. The need for new antibiotics. Clin Microbiol Infect. 2004;10 Suppl 4:1–9.

    Article  PubMed  Google Scholar 

  4. Livermore DM. Has the era of untreatable infections arrived? J Antimicrob Chemother. 2009;64 Suppl 1:i29–36.

    Article  CAS  PubMed  Google Scholar 

  5. Centers for Diseases Control and Prevention – CDC. Antibiotic resistance threats in the United States 2013. http://www.cdc.gov/drugresistance/threat-report-2013/. Accessed 28 May 2015.

  6. Asbell PA, Colby KA, Deng S, McDonnell P, Meisler DM, Raizman MB, et al. Ocular TRUST: nationwide antimicrobial susceptibility patterns in ocular isolates. Am J Ophthalmol. 2008;145(6):951–8.

    Article  PubMed  Google Scholar 

  7. Asbell PA, Sahm DF, Shaw M, Draghi DC, Brown NP. Increasing prevalence of methicillin resistance in serious ocular infections caused by Staphylococcus aureus in the United States: 2000 to 2005. J Cataract Refract Surg. 2008;34(5):814–8.

    Article  PubMed  Google Scholar 

  8. Cavuoto K, Zutshi D, Karp CL, Miller D, Feuer W. Update on bacterial conjunctivitis in South Florida. Ophthalmology. 2008;115(1):51–6.

    Article  PubMed  Google Scholar 

  9. Haas W, Pillar CM, Torres M, Morris TW, Sahm DF. Monitoring antibiotic resistance in ocular microorganisms: results from the antibiotic resistance monitoring in ocular MicRorganisms (ARMOR) 2009 surveillance study. Am J Ophthalmol. 2011;152(4):567–74.

    Article  CAS  PubMed  Google Scholar 

  10. Major Jr JC, Engelbert M, Flynn Jr HW, Miller D, Smiddy WE, Davis JL. Staphylococcus aureus endophthalmitis: antibiotic susceptibilities, methicillin resistance, and clinical outcomes. Am J Ophthalmol. 2010;149(2):278–83. e1.

    Article  CAS  PubMed  Google Scholar 

  11. Otto M. Community-associated MRSA: what makes them special? Int J Med Microbiol. 2013;303(6-7):324–30.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rutar T, Chambers HF, Crawford JB, Perdreau-Remington F, Zwick OM, Karr M, et al. Ophthalmic manifestations of infections caused by the USA300 clone of community-associated methicillin-resistant Staphylococcus aureus. Ophthalmology. 2006;113(8):1455–62.

    Article  PubMed  Google Scholar 

  13. D'Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, et al. Antibiotic resistance is ancient. Nature. 2011;477(7365):457–61.

    Article  PubMed  Google Scholar 

  14. Bispo PJ, Alfonso EC, Flynn HW, Miller D. Emerging 8-methoxyfluoroquinolone resistance among methicillin-susceptible Staphylococcus epidermidis isolates recovered from patients with endophthalmitis. J Clin Microbiol. 2013;51(9):2959–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schimel AM, Miller D, Flynn HW. Evolving fluoroquinolone resistance among coagulase-negative Staphylococcus isolates causing endophthalmitis. Arch Ophthalmol. 2012;130(12):1617–8.

    Article  PubMed  Google Scholar 

  16. Fernandez-Rubio E, Urcelay JL, Cuesta-Rodriguez T. The antibiotic resistance pattern of conjunctival bacteria: a key for designing a cataract surgery prophylaxis. Eye (Lond). 2009;23(6):1321–8.

    Article  CAS  Google Scholar 

  17. Willcox MD. Characterization of the normal microbiota of the ocular surface. Exp Eye Res. 2013;117:99–105.

    Article  CAS  PubMed  Google Scholar 

  18. Callegan MC, Engelbert M, Parke 2nd DW, Jett BD, Gilmore MS. Bacterial endophthalmitis: epidemiology, therapeutics, and bacterium-host interactions. Clin Microbiol Rev. 2002;15(1):111–24.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Benz MS, Scott IU, Flynn Jr HW, Unonius N, Miller D. Endophthalmitis isolates and antibiotic sensitivities: a 6-year review of culture-proven cases. Am J Ophthalmol. 2004;137(1):38–42.

    Article  PubMed  Google Scholar 

  20. Han DP, Wisniewski SR, Wilson LA, Barza M, Vine AK, Doft BH, et al. Spectrum and susceptibilities of microbiologic isolates in the Endophthalmitis Vitrectomy Study. Am J Ophthalmol. 1996;122(1):1–17.

    Article  CAS  PubMed  Google Scholar 

  21. Melo GB, Bispo PJ, Yu MC, Pignatari AC, Hofling-Lima AL. Microbial profile and antibiotic susceptibility of culture-positive bacterial endophthalmitis. Eye (Lond). 2011;25(3):382–8.

    Article  CAS  Google Scholar 

  22. Schimel AM, Miller D, Flynn Jr HW. Endophthalmitis isolates and antibiotic susceptibilities: a 10-year review of culture-proven cases. Am J Ophthalmol. 2013;156:50–2.

    Article  CAS  PubMed  Google Scholar 

  23. Bannerman TL, Rhoden DL, McAllister SK, Miller JM, Wilson LA. The source of coagulase-negative staphylococci in the Endophthalmitis Vitrectomy Study. A comparison of eyelid and intraocular isolates using pulsed-field gel electrophoresis. Arch Ophthalmol. 1997;115(3):357–61.

    Article  CAS  PubMed  Google Scholar 

  24. Holland EJ, McDonald MB, Parekh JG, Sheppard JD. Antibiotic resistance in acute postoperative endophthalmitis. Ophthalmology. 2014;121(11 Suppl):S1–9.

    Article  PubMed  Google Scholar 

  25. McDonald M, Blondeau JM. Emerging antibiotic resistance in ocular infections and the role of fluoroquinolones. J Cataract Refract Surg. 2010;36(9):1588–98.

    Article  PubMed  Google Scholar 

  26. Prevent Blindness America. Vision Problems in the U.S. Prevalence of adult vision impairment and age-related eye disease in America 2008. http://www.preventblindness.org/eye-reports-research-studies. Accessed 30 May 2015.

  27. Cullen KA, Hall MJ, Golosinskiy A. Ambulatory surgery in the United States, 2006. National health statistics reports 2009; number 11. Centers for Disease Control website. Accessed 22 Sept 2015. http://www.cdc.gov/nchs/data/nhsr/nhsr011.pdf.

  28. Ramulu PY, Do DV, Corcoran KJ, Corcoran SL, Robin AL. Use of retinal procedures in medicare beneficiaries from 1997 to 2007. Arch Ophthalmol. 2010;128(10):1335–40.

    Article  PubMed  Google Scholar 

  29. Sadaka A, Durand ML, Gilmore MS. Bacterial endophthalmitis in the age of outpatient intravitreal therapies and cataract surgeries: host-microbe interactions in intraocular infection. Prog Retin Eye Res. 2012;31(4):316–31.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gower EW, Lindsley K, Nanji AA, Leyngold I, McDonnell PJ. Perioperative antibiotics for prevention of acute endophthalmitis after cataract surgery. Cochrane Database Syst Rev. 2013;(7):CD006364.

    Google Scholar 

  31. Matsuura K, Mori T, Miyamoto T, et al. Survey of Japanese ophthalmic surgeons regarding perioperative disinfection and antibiotic prophylaxis in cataract surgery. Clin Ophthalmol. 2014;8:2013–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Endophthalmitis Study Group, European Society of Cataract & Refractive Surgeons. Prophylaxis of postoperative endophthalmitis following cataract surgery: results of the ESCRS multicenter study and identification of risk factors. J Cataract Refact Surg. 2007;33:978–88.

    Article  Google Scholar 

  33. Chang DF, Braga-Mele R, Mamalis N, Masket S, Miller KM, Nichamin LD, et al. Prophylaxis of postoperative endophthalmitis after cataract surgery: results of the 2007 ASCRS member survey. J Cataract Refract Surg. 2007;33(10):1801–5.

    Article  PubMed  Google Scholar 

  34. Scoper SV. Review of third-and fourth-generation fluoroquinolones in ophthalmology: in-vitro and in-vivo efficacy. Adv Ther. 2008;25(10):979–94.

    Article  CAS  PubMed  Google Scholar 

  35. Kim SJ, Toma HS. Antimicrobial resistance and ophthalmic antibiotics: 1-year results of a longitudinal controlled study of patients undergoing intravitreal injections. Arch Ophthalmol. 2011;129(9):1180–8.

    Article  PubMed  Google Scholar 

  36. Milder E, Vander J, Shah C, Garg S. Changes in antibiotic resistance patterns of conjunctival flora due to repeated use of topical antibiotics after intravitreal injection. Ophthalmology. 2012;119(7):1420–4.

    Article  PubMed  Google Scholar 

  37. Miyanaga M, Nejima R, Miyai T, Miyata K, Ohashi Y, Inoue Y, et al. Changes in drug susceptibility and the quinolone-resistance determining region of Staphylococcus epidermidis after administration of fluoroquinolones. J Cataract Refract Surg. 2009;35(11):1970–8.

    Article  PubMed  Google Scholar 

  38. Yin VT, Weisbrod DJ, Eng KT, Schwartz C, Kohly R, Mandelcorn E, et al. Antibiotic resistance of ocular surface flora with repeated use of a topical antibiotic after intravitreal injection. JAMA Ophthalmol. 2013;131(4):456–61.

    Article  CAS  PubMed  Google Scholar 

  39. Miller D, Flynn PM, Scott IU, Alfonso EC, Flynn Jr HW. In vitro fluoroquinolone resistance in staphylococcal endophthalmitis isolates. Arch Ophthalmol. 2006;124(4):479–83.

    Article  CAS  PubMed  Google Scholar 

  40. Arantes TE, Cavalcanti RF, Diniz Mde F, Severo MS, Lins Neto J, Castro CM. Conjunctival bacterial flora and antibiotic resistance pattern in patients undergoing cataract surgery. Arq Bras Oftalmol. 2006;69(1):33–6.

    Article  PubMed  Google Scholar 

  41. Hori Y, Nakazawa T, Maeda N, Sakamoto M, Yokokura S, Kubota A, et al. Susceptibility comparisons of normal preoperative conjunctival bacteria to fluoroquinolones. J Cataract Refract Surg. 2009;35(3):475–9.

    Article  PubMed  Google Scholar 

  42. Hsu HY, Lind JT, Tseng L, Miller D. Ocular flora and their antibiotic resistance patterns in the midwest: a prospective study of patients undergoing cataract surgery. Am J Ophthalmol. 2013;155(1):36–44. e2.

    Article  PubMed  Google Scholar 

  43. Park SH, Lim JA, Choi JS, Kim KA, Joo CK. The resistance patterns of normal ocular bacterial flora to 4 fluoroquinolone antibiotics. Cornea. 2009;28(1):68–72.

    Article  PubMed  Google Scholar 

  44. Kim SJ, Toma HS, Midha NK, Cherney EF, Recchia FM, Doherty TJ. Antibiotic resistance of conjunctiva and nasopharynx evaluation study: a prospective study of patients undergoing intravitreal injections. Ophthalmology. 2010;117(12):2372–8.

    Article  PubMed  Google Scholar 

  45. Moss JM, Sanislo SR, Ta CN. Antibiotic susceptibility patterns of ocular bacterial flora in patients undergoing intravitreal injections. Ophthalmology. 2010;117(11):2141–5.

    Article  PubMed  Google Scholar 

  46. Kim SJ, Chomsky AS, Sternberg Jr P. Reducing the risk of endophthalmitis after intravitreous injection. JAMA Ophthalmol. 2013;131(5):674–5.

    Article  CAS  PubMed  Google Scholar 

  47. Wykoff CC, Flynn Jr HW, Rosenfeld PJ. Prophylaxis for endophthalmitis following intravitreal injection: antisepsis and antibiotics. Am J Ophthalmol. 2011;152(5):717–9. e2.

    Article  PubMed  Google Scholar 

  48. Dave SB, Toma HS, Kim SJ. Ophthalmic antibiotic use and multidrug-resistant staphylococcus epidermidis: a controlled, longitudinal study. Ophthalmology. 2011;118(10):2035–40.

    Article  PubMed  Google Scholar 

  49. Bhavsar AR, Stockdale CR, Ferris 3rd FL, Brucker AJ, Bressler NM, Glassman AR, et al. Update on risk of endophthalmitis after intravitreal drug injections and potential impact of elimination of topical antibiotics. Arch Ophthalmol. 2012;130(6):809–10.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chen RW, Rachitskaya A, Scott IU, Flynn Jr HW. Is the use of topical antibiotics for intravitreal injections the standard of care or are we better off without antibiotics? JAMA Ophthalmol. 2013;131(7):840–2.

    Article  PubMed  Google Scholar 

  51. Yu CQ, Ta CN. Prevention of postcataract endophthalmitis: evidence-based medicine. Curr Opin Ophthalmol. 2012;23(1):19–25.

    Article  PubMed  Google Scholar 

  52. Hsu J, Gerstenblith AT, Garg SJ, Vander JF. Conjunctival flora antibiotic resistance patterns after serial intravitreal injections without postinjection topical antibiotics. Am J Ophthalmology. 2014;157(3):514–8. e1.

    Article  CAS  Google Scholar 

  53. Bhatt SS, Stepien KE, Joshi K. Prophylactic antibiotic use after intravitreal injection: effect on endophthalmitis rate. Retina. 2011;31(10):2032–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bhavsar AR, Googe Jr JM, Stockdale CR, Bressler NM, Brucker AJ, Elman MJ, et al. Risk of endophthalmitis after intravitreal drug injection when topical antibiotics are not required: the diabetic retinopathy clinical research network laser-ranibizumab-triamcinolone clinical trials. Arch Ophthalmol. 2009;127(12):1581–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cheung CS, Wong AW, Lui A, Kertes PJ, Devenyi RG, Lam WC. Incidence of endophthalmitis and use of antibiotic prophylaxis after intravitreal injections. Ophthalmology. 2012;119(8):1609–14.

    Article  PubMed  Google Scholar 

  56. Storey P, Dollin M, Pitcher J, Reddy S, Vojtko J, Vander J, et al. The role of topical antibiotic prophylaxis to prevent endophthalmitis after intravitreal injection. Ophthalmology. 2014;121(1):283–9.

    Article  PubMed  Google Scholar 

  57. Storey P, Dollin M, Rayess N, Pitcher J, Reddy S, Vander J, et al. The effect of prophylactic topical antibiotics on bacterial resistance patterns in endophthalmitis following intravitreal injection. Graefes Arch Clin Exp Ophthalmol. 2016;254(2):235–42.

    Google Scholar 

  58. Bispo PJ, Miller D, Distinct frequency of biofilm (BF)-related genes among Ciprofloxacin (CIP) Susceptible and Resistant S. epidermidis (SEPI) agr types I (tI) and II (tII) Isolates from Endophthalmitis (END). Poster presented at Interscience Conference on Antimicrobial Agents and Chemotherapy; 2012. San Francisco: American Society for Microbiology. Abstract #C2-1400.

    Google Scholar 

  59. Chiquet C, Maurin M, Altayrac J, Aptel F, Boisset S, Vandenesch F, et al. Correlation between clinical data and antibiotic resistance in coagulase-negative Staphylococcus species isolated from 68 patients with acute post-cataract endophthalmitis. Clin Microbiol Infect. 2015;21(6):592 e1–8.

    Google Scholar 

  60. Hartman BJ, Tomasz A. Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol. 1984;158(2):513–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Katayama Y, Ito T, Hiramatsu K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 2000;44(6):1549–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gentile RC, Shukla S, Shah M, Ritterband DC, Engelbert M, Davis A, et al. Microbiological spectrum and antibiotic sensitivity in endophthalmitis: a 25-year review. Ophthalmology. 2014;121(8):1634–42.

    Article  PubMed  Google Scholar 

  63. Kristich CJ, Rice LB, Arias CA. Enterococcal infection-treatment and antibiotic resistance. In: Gilmore MS, Clewell DB, Ike Y, Shankar N, editors. Enterococci: from commensals to leading causes of drug resistant infection. Boston: Massachusetts Eye and Ear Infirmary; 2014.

    Google Scholar 

  64. Kos VN, Desjardins CA, Griggs A, Cerqueira G, Van Tonder A, Holden MT, et al. Comparative genomics of vancomycin-resistant Staphylococcus aureus strains and their positions within the clade most commonly associated with Methicillin-resistant S. aureus hospital-acquired infection in the United States. MBio. 2012;3(3): e00112–12.

    Google Scholar 

  65. Howden BP, Davies JK, Johnson PD, Stinear TP, Grayson ML. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev. 2010;23(1):99–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen KJ, Lai CC, Sun MH, Chen TL, Yang KJ, Kuo YH, et al. Postcataract endophthalmitis caused by Enterococcus faecalis. Ocul Immunol Inflamm. 2009;17(5):364–9.

    Article  PubMed  Google Scholar 

  67. Kuriyan AE, Sridhar J, Flynn Jr HW, Smiddy WE, Albini TA, Berrocal AM, et al. Endophthalmitis caused by Enterococcus faecalis: clinical features, antibiotic sensitivities, and outcomes. Am J Ophthalmol. 2014;158(5):1018–23.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Rishi E, Rishi P, Nandi K, Shroff D, Therese KL. Endophthalmitis caused by Enterococcus faecalis: a case series. Retina. 2009;29(2):214–7.

    Article  PubMed  Google Scholar 

  69. Tang CW, Cheng CK, Lee TS. Community-acquired bleb-related endophthalmitis caused by vancomycin-resistant enterococci. Can J Ophthalmol. 2007;42(3):477–8.

    Article  PubMed  Google Scholar 

  70. Hillier RJ, Arjmand P, Rebick G, Ostrowski M, Muni RH. Post-traumatic vancomycin-resistant enterococcal endophthalmitis. J Ophthalmic Inflamm Infect. 2013;3(1):42.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Esmaeli B, Holz ER, Ahmadi MA, Krathen RA, Raad II. Endogenous endophthalmitis secondary to vancomycin-resistant enterococci infection. Retina. 2003;23(1):118–9.

    Article  PubMed  Google Scholar 

  72. Bains HS, Weinberg DV, Feder RS, Noskin GA. Postoperative vancomycin-resistant Enterococcus faecium endophthalmitis. Arch Ophthalmol. 2007;125(9):1292–3.

    Article  PubMed  Google Scholar 

  73. Hernandez-Camarena JC, Bautista-de Lucio VM, Navas A, Ramirez-Miranda A, Graue-Hernandez EO. Delayed-onset post-keratoplasty endophthalmitis caused by vancomycin-resistant Enterococcus faecium. Case Rep Ophthalmol. 2012;3(3):370–4.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sharma S, Desai RU, Pass AB, Saffra NA. Vancomycin-resistant enterococcal endophthalmitis. Arch Ophthalmol. 2010;128(6):794–5.

    Article  PubMed  Google Scholar 

  75. Pathengay A, Flynn Jr HW, Isom RF, Miller D. Endophthalmitis outbreaks following cataract surgery: causative organisms, etiologies, and visual acuity outcomes. J Cataract Refract Surg. 2012;38(7):1278–82.

    Article  PubMed  Google Scholar 

  76. Sridhar J, Kuriyan AE, Flynn Jr HW, Miller D. Endophthalmitis caused by pseudomonas aeruginosa: clinical features, antibiotic susceptibilities, and treatment outcomes. Retina. 2015;35:1101–6.

    Article  PubMed  Google Scholar 

  77. Pathengay A, Moreker MR, Puthussery R, Ambatipudi S, Jalali S, Majji AB, et al. Clinical and microbiologic review of culture-proven endophthalmitis caused by multidrug-resistant bacteria in patients seen at a tertiary eye care center in southern India. Retina. 2011;31(9):1806–11.

    Article  PubMed  Google Scholar 

  78. Maltezou HC, Pappa O, Nikolopoulos G, Ftika L, Maragos A, Kaitsa H, et al. Postcataract surgery endophthalmitis outbreak caused by multidrug-resistant Pseudomonas aeruginosa. Am J Infect Control. 2012;40(1):75–7.

    Article  PubMed  Google Scholar 

  79. Pinna A, Usai D, Sechi LA, Zanetti S, Jesudasan NC, Thomas PA, et al. An outbreak of post-cataract surgery endophthalmitis caused by Pseudomonas aeruginosa. Ophthalmology. 2009;116(12):2321–61.e1–4.

    Article  PubMed  Google Scholar 

  80. Oguido AP, Casella AM, Hofling-Lima AL, Pacheco SA, Bispo PJ, Marques F. Pseudomonas aeruginosa endophthalmitis after penetrating keratoplasty transmitted from the same donor to two recipients confirmed by pulsed-field gel electrophoresis. J Clin Microbiol. 2011;49(9):3346–7.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Guerra RL, Freitas Bde P, Parcero CM, et al. An outbreak of forty-five cases of Pseudomonas aeruginosa acute endophthalmitis after phacoemulsification. Arq Bras Oftalmol. 2012;75:344–7.

    Article  PubMed  Google Scholar 

  82. Donnenfeld ED, Comstock TL, Proksch JW. Human aqueous humor concentrations of besifloxacin, moxifloxacin, and gatifloxacin after topical ocular application. J Cataract Refract Surg. 2011;37(6):1082–9.

    Article  PubMed  Google Scholar 

  83. Harper T, Miller D, Flynn Jr HW. In vitro efficacy and pharmacodynamic indices for antibiotics against coagulase-negative staphylococcus endophthalmitis isolates. Ophthalmology. 2007;114(5):871–5.

    Article  PubMed  Google Scholar 

  84. Ambrose PG, Bhavnani SM, Rubino CM, Louie A, Gumbo T, Forrest A, et al. Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it's not just for mice anymore. Clin Infect Dis. 2007;44(1):79–86.

    Article  CAS  PubMed  Google Scholar 

  85. Nicolau DP. Optimizing outcomes with antimicrobial therapy through pharmacodynamic profiling. J Infect Chemother. 2003;9(4):292–6.

    Article  CAS  PubMed  Google Scholar 

  86. Segreti J, Jones RN, Bertino Jr JS. Challenges in assessing microbial susceptibility and predicting clinical response to newer-generation fluoroquinolones. J Ocul Pharmacol Ther. 2012;28(1):3–11.

    Article  CAS  PubMed  Google Scholar 

  87. McCulley JP, Caudle D, Aronowicz JD, Shine WE. Fourth-generation fluoroquinolone penetration into the aqueous humor in humans. Ophthalmology. 2006;113(6):955–9.

    Article  CAS  PubMed  Google Scholar 

  88. Yoshida J, Kim A, Pratzer KA, Stark WJ. Aqueous penetration of moxifloxacin 0.5% ophthalmic solution and besifloxacin 0.6% ophthalmic suspension in cataract surgery patients. J Cataract Refract Surg. 2010;36(9):1499–502.

    Article  PubMed  Google Scholar 

  89. Taban M, Sarayba MA, Ignacio TS, Behrens A, McDonnell PJ. Ingress of India ink into the anterior chamber through sutureless clear corneal cataract wounds. Arch Ophthalmol. 2005;123(5):643–8.

    Article  PubMed  Google Scholar 

  90. ESCRS Endophthalmitis Study Group. Prophylaxis of postoperative endophthalmitis following cataract surgery: results of the ESCRS multicenter study and identification of risk factors. J Cataract Refract Surg. 2007;33:978–88.

    Article  Google Scholar 

  91. Clinical Laboratory Standards Institute. M100-S13. Performance standards for antimicrobial susceptibility testing: twenty third informational supplement. Wayne: Clinical Laboratory Standards Institute; 2013.

    Google Scholar 

  92. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 6.0, 2016. http://www.eucast.org.

  93. Kakisu K, Matsunaga T, Kobayakawa S, Sato T, Tochikubo T. Development and efficacy of a drug-releasing soft contact lens. Invest Ophthalmol Vis Sci. 2013;54(4):2551–61.

    Article  CAS  PubMed  Google Scholar 

  94. Garty S, Shirakawa R, Warsen A, Anderson EM, Noble ML, Bryers JD, et al. Sustained antibiotic release from an intraocular lens-hydrogel assembly for cataract surgery. Invest Ophthalmol Vis Sci. 2011;52(9):6109–16.

    Article  CAS  PubMed  Google Scholar 

  95. Nentwich MM. Incidence of postoperative endophthalmitis from 1990-2009 using povidone-iodine but no intracameral antibiotics at a single institution. J Cataract Refract Surg. 2015;41:58–66.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Gilmore PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bispo, P.J.M., Selleck, E.M., Gilmore, M.S. (2016). Antibiotic Resistance in Endophthalmitis Pathogens. In: Durand, M., Miller, J., Young, L. (eds) Endophthalmitis. Springer, Cham. https://doi.org/10.1007/978-3-319-29231-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29231-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29229-8

  • Online ISBN: 978-3-319-29231-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics