Skip to main content

Lower Bounds on the Dilation of Plane Spanners

  • Conference paper
Algorithms and Discrete Applied Mathematics (CALDAM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9602))

Included in the following conference series:

Abstract

(I) We exhibit a set of 23 points in the plane that has dilation at least 1.4308, improving the previously best lower bound of 1.4161 for the worst-case dilation of plane spanners.

(II) For every \(n\ge 13\), there exists an n-element point set S such that the degree 3 dilation of S denoted by \(\delta _0(S,3) \text { equals } 1+\sqrt{3}=2.7321\ldots \) in the domain of plane geometric spanners. In the same domain, we show that for every \(n\ge 6\), there exists a an n-element point set S such that the degree 4 dilation of S denoted by \(\delta _0(S,4) \text { equals } 1 + \sqrt{(5-\sqrt{5})/2}=2.1755\ldots \) The previous best lower bound of 1.4161 holds for any degree.

(III) For every \(n\ge 6 \), there exists an n-element point set S such that the stretch factor of the greedy triangulation of S is at least 2.0268.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Due to page limitations, the proofs of Lemmas 2, 3, 4 are deferred to the full version [21].

References

  1. Agarwal, P.K., Klein, R., Knauer, C., Langerman, S., Morin, P., Sharir, M., Soss, M.: Computing the detour and spanning ratio of paths, trees, and cycles in 2D and 3D. Discrete Comput. Geom. 39(1–3), 17–37 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Althöfer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete Comput. Geom. 9, 81–100 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amarnadh, N., Mitra, P.: Upper bound on dilation of triangulations of cyclic polygons. In: Proceedings of the Conference Computational Science and Applications, pp. 1–9. Springer (2006)

    Google Scholar 

  4. Aronov, B., de Berg, M., Cheong, O., Gudmundsson, J., Haverkort, H.J., Vigneron, A.: Sparse geometric graphs with small dilation. Comput. Geom. 40(3), 207–219 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonichon, N., Gavoille, C., Hanusse, N., Perković, L.: Plane spanners of maximum degree six. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 19–30. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Bonichon, N., Kanj, I., Perković, L., Xia, G.: There are plane spanners of degree 4 and moderate stretch factor. Discrete Comput. Geom. 53(3), 514–546 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bose, P., Carmi, P., Chaitman-Yerushalmi, L.: On bounded degree plane strong geometric spanners. J. Discrete Algorithms 15, 16–31 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bose, P., Devroye, L., Löffler, M., Snoeyink, J., Verma, V.: Almost all delaunay triangulations have stretch factor greater than \(\pi /2\). Comput. Geom. 44(2), 121–127 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bose, P., Gudmundsson, J., Smid, M.: Constructing plane spanners of bounded degree and low weight. Algorithmica 42, 249–264 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bose, P., Lee, A., Smid, M.: On generalized diamond spanners. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 325–336. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Bose, P., Smid, M.: On plane geometric spanners: a survey and open problems. Comput. Geom. 46(7), 818–830 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bose, P., Smid, M., Xu, D.: Delaunay and diamond triangulations contain spanners of bounded degree. Internat. J. Comput. Geom. Appl. 19(2), 119–140 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chandra, B., Das, G., Narasimhan, G., Soares, J.: New sparseness results on graph spanners. Internat. J. Comput. Geom. Appl. 5, 125–144 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cheong, O., Herman, H., Lee, M.: Computing a minimum-dilation spanning tree is NP-hard. Comput. Geom. 41(3), 188–205 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chew, P.: There are planar graphs almost as good as the complete graph. J. Comput. Syst. Sci. 39(2), 205–219 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cui, S., Kanj, I., Xia, G.: On the stretch factor of Delaunay triangulations of points in convex position. Comput. Geom. 44(2), 104–109 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Das, G., Heffernan, P.: Constructing degree-3 spanners with other sparseness properties. Internat. J. Found. Comput. Sci. 7(2), 121–136 (1996)

    Article  MATH  Google Scholar 

  18. Das, G., Joseph, D.: Which triangulations approximate the complete graph? In: Djidjev, H.N. (ed.) Optimal Algorithms. LNCS, vol. 401, pp. 168–192. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  19. Dobkin, D.P., Friedman, S.J., Supowit, K.J.: Delaunay graphs are almost as good as complete graphs. Discrete Comput. Geom. 5, 399–407 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dumitrescu, A., Ebbers-Baumann, A., Grüne, A., Klein, R., Rote, G.: On the geometric dilation of closed curves, graphs, and point sets. Comput. Geom. 36, 16–38 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dumitrescu, A., Ghosh, A.: Lower bounds on the dilation of plane spanners, October 2015. arXiv:1509.07181

  22. Dumitrescu, A., Ghosh, A.: Lattice spanners of low degree. In: Govindarajan, S., Maheshwari, A. (eds.) CALDAM 2016. LNCS, Vol. 9602, pp. 152–163. Springer, Switzerland (2016)

    Google Scholar 

  23. Ebbers-Baumann, A., Grüne, A., Klein, R.: On the geometric dilation of finite point sets. Algorithmica 44, 137–149 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ebbers-Baumann, A., Klein, R., Langetepe, E., Lingas, A.: A fast algorithm for approximating the detour of a polygonal chain. Comput. Geom. 27, 123–134 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Eppstein, D.: Spanning trees and spanners, in Handbook of Computational Geometry (Sack, J.R., Urrutia, J. (Eds)), pp. 425–461. Amsterdam (2000)

    Google Scholar 

  26. Gudmundsson, J., Knauer, C.: Dilation and detour in geometric networks, in handbook on approximation algorithms and metaheuristics, Chapter 52 (Gonzalez,T. (Eds.), Chapman & Hall/CRC, Boca Raton (2007)

    Google Scholar 

  27. Kanj, I.: Geometric spanners: recent results and open directions. In: Proceedings of the 3rd International Conference on Communication and Information Technology, pp. 78–82. IEEE (2013)

    Google Scholar 

  28. Kanj, I., Perković, L.: On geometric spanners of Euclidean and unit disk graphs. In: Proceedings of the 25th Annual Symposium on Theoretical Aspects of Computer Science, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, pp. 409–420 (2008)

    Google Scholar 

  29. Keil, M., Gutwin, C.A.: Classes of graphs which approximate the complete Euclidean graph. Discrete Comput. Geom. 7, 13–28 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Klein, R., Kutz, M., Penninger, R.: Most finite point sets in the plane have dilation \(>\) 1. Discrete Comput. Geom. 53(1), 80–106 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Levcopoulos, C., Lingas, A.: There are planar graphs almost as good as the complete graphs and almost as cheap as minimum spanning trees. Algorithmica 8, 251–256 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, X.Y., Wang, Y.: Efficient construction of low weight bounded degree planar spanner. Internat. J. Comput. Geom. Appl. 14(1–2), 69–84 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mulzer, W.: Minimum dilation triangulations for the regular \(n\)-gon, Masters thesis, Freie Universität, Berlin (2004)

    Google Scholar 

  34. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  35. Parvez, M.T., Rahman, M.S., Nakano, S.-I.: Generating all triangulations of plane graphs. J. Graph. Algorithms Appl. 15(3), 457–482 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Xia, G.: The stretch factor of the delaunay triangulation is less than 1998. SIAM J. Comput. 42(4), 1620–1659 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xia, G., Zhang, L.: Toward the tight bound of the stretch factor of delaunay triangulations. In: Proceedings of the 23rd Canadian Conference on Computer Geometry (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Dumitrescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Dumitrescu, A., Ghosh, A. (2016). Lower Bounds on the Dilation of Plane Spanners. In: Govindarajan, S., Maheshwari, A. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2016. Lecture Notes in Computer Science(), vol 9602. Springer, Cham. https://doi.org/10.1007/978-3-319-29221-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29221-2_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29220-5

  • Online ISBN: 978-3-319-29221-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics