Skip to main content

Linear Time Algorithms for Euclidean 1-Center in \(\mathfrak {R}^d\) with Non-linear Convex Constraints

  • Conference paper
Algorithms and Discrete Applied Mathematics (CALDAM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9602))

Included in the following conference series:

Abstract

In this paper, we first present a linear-time algorithm to find the smallest circle enclosing n given points in \(\mathfrak {R}^2\) with the constraint that the center of the smallest enclosing circle lies inside a given disk. We extend this result to \(\mathfrak {R}^3\) by computing constrained smallest enclosing sphere centered on a given sphere. We generalize the result for the case of points in \(\mathfrak {R}^d\) where center of the minimum enclosing ball lies inside a given ball. We show that similar problem of minimum intersecting/stabbing ball for set of hyper planes in \(\mathfrak {R}^d\) can also be solved using similar techniques. We also show how minimum intersecting disk with center constrained on a given disk can be computed to intersect a set of convex polygons. Lastly, we show that this technique is applicable when the center of minimum enclosing/intersecting ball lies in a convex region bounded by constant number of non-linear constraints with computability assumptions. We solve each of these problems in linear time complexity for fixed dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barba, L., Bose, P., Langerman, S.: Optimal algorithms for constrained 1-center problems. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 84–95. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  2. Bose, P., Toussaint, G.T.: Computing the constrained euclidean geodesic and link center of a simple polygon with application. Comput. Graph. Int. Conf. CGI 1996, 102–110 (1996)

    Google Scholar 

  3. Bose, P., Wang, Q.: Facility location constrained to a polygonal domain. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 153–164. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Chazelle, B., Matousek, J.: On linear-time deterministic algorithms for optimization problems in fixed dimension. J. Algorithms 21(3), 579–597 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Clarkson, K.L.: A randomized algorithm for closest-point queries. SIAM J. Comput. 17(4), 830–847 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dyer, M.E.: On a multidimensional search technique and its application to the euclidean one-centre problem. SIAM J. Comput. 15(3), 725–738 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hurtado, F., Sacristan, V., Toussaint, G.: Some constrained minimax and maximin location problems. Studies in Locational Analysis, 15:1735 (2000)

    Google Scholar 

  8. Jadhav, S., Mukhopadhyay, A., Bhattacharya, B.K.: An optimal algorithm for the intersection radius of a set of convex polygons. J. Algorithms 20(2), 244–267 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Matousek, J., Sharir, M., Welzl, E.: A subexponential bound for linear programming. Algorithmica 16(4/5), 498–516 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Megiddo, N.: Linear-time algorithms for linear programming in r\({}^{\text{3 }}\) and related problems. SIAM J. Comput. 12(4), 759–776 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Megiddo, N.: Linear programming in linear time when the dimension is fixed. J. ACM 31(1), 114–127 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Preparata, F.: Minimum spanning circle. In: Steps into Computational Geometry, Technical report, University Illinois, Urbana, IL (1977)

    Google Scholar 

  13. Roy, S., Karmakar, A., Das, S., Nandy, S.C.: Constrained minimum enclosing circle with center on a query line segment. Comput. Geom. 42(6–7), 632–638 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shamos, M.I.: Computational Geometry. Ph.D. thesis, Department of Computer Science, Yale Universiy, New Haven, CT (1978)

    Google Scholar 

  15. Shamos, M.I., Hoey, D.: Closest-point problems. In: 16th Annual Symposium on Foundations of Computer Science, pp. 151–162 (1975)

    Google Scholar 

  16. Sharir, M., Welzl, E.: A combinatorial bound for linear programming and related problems. In: STACS 92, 9th Annual Symposium on Theoretical Aspects of Computer Science, pp. 569–579 (1992)

    Google Scholar 

  17. Sylvester, J.J.: A question in the geometry of situation. Q. J. Math. 1, 79 (1857)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Das, S., Nandy, A., Sarvottamananda, S. (2016). Linear Time Algorithms for Euclidean 1-Center in \(\mathfrak {R}^d\) with Non-linear Convex Constraints. In: Govindarajan, S., Maheshwari, A. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2016. Lecture Notes in Computer Science(), vol 9602. Springer, Cham. https://doi.org/10.1007/978-3-319-29221-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29221-2_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29220-5

  • Online ISBN: 978-3-319-29221-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics