Skip to main content

Specification and Design of Trust-Based Open Self-Organising Systems

  • Chapter
  • First Online:
Trustworthy Open Self-Organising Systems

Abstract

In open multi-agent systems, we can make only little assumptions about the system’s scale, the behaviour of participating agents, and its environment. Especially with regard to mission-critical systems, the ability to deal with a large number of heterogeneous agents that are exposed to an uncertain environment becomes a major concern: Because failures can have massive consequences for people, industries, and public services, it is of utmost importance that such systems achieve their goals under all circumstances. A prominent example are power management systems whose paramount goal is to balance production and consumption. In this context, we tackle challenges comprising how to specify and design these systems to allow for their efficient and robust operation. Among other things, we introduce constraint-based specification techniques to address the system’s heterogeneity and show trust models that allow to measure, anticipate, and deal with uncertainties. On this basis, we present algorithms for self-organisation and self-optimisation that enable the formation of scalable system structures at runtime and allow for efficient and robust resource allocation under adverse conditions. Throughout the chapter, the problem of balancing production and consumption in decentralised autonomous power management systems serves as a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://posomas.isse.de

  2. 2.

    Note that we specify the output of non-dispatchable power plants to be part of the system’s demand. That is because their supply cannot be controlled.

  3. 3.

    Since dispatchable prosumers show discrete modes of operation (e.g. on/off), the knapsack problem (i.e. choosing which prosumers should contribute at all) can be seen as a special case of the scheduling problem.

  4. 4.

    http://www.gesetze-im-internet.de/eeg_2014/index.html

  5. 5.

    An AVPP’s local residual load is negative, for instance, if its local environment only consists of photovoltaics, leading to a surplus of production.

  6. 6.

    “Subordinate” power plants are those an AVPP is directly responsible for, i.e. those on its next lower level in the hierarchy.

  7. 7.

    Recall that b further has a minimum up-time constraint but this does not concern the generally feasible contributions relevant at this point but rather dynamic behaviour.

  8. 8.

    Piecewise linear approximations offer to formulate problems as mixed integer linear programs which have a rich and efficient algorithmic support.

  9. 9.

    Supposedly, more points were expected to provide higher accuracy.

  10. 10.

    Note that this operator leads to so-called collapsing elements [31] that need further attention [34].

  11. 11.

    We opted for anticipating prediction errors, i.e. deviations, instead of the agents’ behaviour because some agents make better prediction about their future behaviour than others and anticipating the agents’ actual behaviour without incorporating their prediction requires additional information which makes the task of creating an adequate probabilistic model much more difficult.

  12. 12.

    Bear in mind that model abstraction requires additional computational effort (see Sect. 2.3.2).

  13. 13.

    Note that we do not use TBSTs to reflect uncertainties in the dispatchable agents’ supply. If we used TBSTs, we would be faced with the problem that changing the contribution of a proposer a i in response to the TBST of a proposer a j could cause a change in a i ’s TBST, whereupon a j would have to change its contribution and so on and so forth. It is not guaranteed that there is a fixed point, i.e. a steady state.

  14. 14.

    Supported by a separate partition that holds all outliers.

  15. 15.

    If the objective is to have similar mean values, optimal anticlusterings also yield partitions whose mean values correspond to the mean of all elements in the system. However, the anticlustering metric still implies another order on candidate solutions than homogeneous partitioning. As the large search space prevents us from taking optimal results for granted, anticlustering is not of use here. Homogeneous partitioning is further not limited to establishing similar mean values. This is shown by the example of forming partitions with a similar number of agents of a specific type.

References

  1. Müller-Schloer, C., Schmeck, H., Ungerer, T.: Organic Computing – A Paradigm Shift for Complex Systems. Springer, Basel (2011)

    Book  MATH  Google Scholar 

  2. Nafz, F., Seebach, H., Steghöfer, J.-P., Anders, G., Reif, W.: Constraining self-organisation through corridors of correct behaviour: the restore invariant approach. In: Müller-Schloer, C., Schmeck, H., Ungerer, T. (eds.) Organic Computing – A Paradigm Shift for Complex Systems, vol. 1, pp. 79–93. Springer, Basel (2011). ISBN:978-3-0348-0129-4

    Chapter  Google Scholar 

  3. Güdemann, M., Nafz, F., Ortmeier, F., Seebach, H., Reif, W.: A specification and construction paradigm for organic computing systems. In: Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO ’08), Venice, pp. 233–242 (2008)

    Google Scholar 

  4. Schmeck, H., Müller-Schloer, C., Çakar, E., Mnif, M., Richter, U.: Adaptivity and self-organization in organic computing systems. ACM Trans. Auton. Adapt. Syst. 5, 10:1–10:32 (2010)

    Google Scholar 

  5. Anders, G., Seebach, H., Steghöfer, J.-P., Reif, W., André, E., Hähner, J., Müller-Schloer, C., Ungerer, T.: The social concept of trust as enabler for robustness in open self-organising systems. In: Reif, W., Anders, G., Seebach, H., Steghöfer, J.-P., André, E., Hähner, J., Müller-Schloer, C., Ungerer, T. (eds.) Autonomic Systems, vol. 7, pp. 1–16 (2016)

    Google Scholar 

  6. Steghöfer, J.-P., Seebach, H., Eberhardinger, B., Reif, W.: PosoMAS: an extensible, modular SE process for open self-organising systems. In: Dam, H., Pitt, J., Xu, Y., Governatori, G., Ito, T. (eds.) PRIMA 2014: Principles and Practice of Multi-Agent Systems, vol. 8861, pp. 1–17. Springer (2014). ISBN:978-3-319-13190-0

    Google Scholar 

  7. Dötsch, F., Denzinger, J., Kasinger, H., Bauer, B.: Decentralized real-time control of water distribution networks using self-organizing multi-agent systems. In: Proceedings of the 4th International Conference on Self-Adaptive and Self-Organizing Systems (SASO’10), Budapest, pp. 223–232 (2010)

    Google Scholar 

  8. Mora, T., Sesay, A.B., Denzinger, J., Golshan, H., Poissant, G., Konecnik, C.: Cooperative search for optimizing pipeline operations. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems: Industrial Track, Portugal, pp. 115–122. International Foundation for Autonomous Agents and Multiagent Systems (2008)

    Google Scholar 

  9. Benonysson, A., Bøhm, B., Ravn, H.F.: Operational optimization in a district heating system. Energy Convers. Manag. 36, 297–314 (1995)

    Article  Google Scholar 

  10. UCTE: UCTE operation handbook – policy 1: load-frequency control and performance. Technical report UCTE OH P1. Union for the Co-ordination of Transmission of Electricity (2009)

    Google Scholar 

  11. Van Zandt, T.: Hierarchical computation of the resource allocation problem. Eur. Econ. Rev. 39, 700–708 (1995)

    Article  Google Scholar 

  12. Rani, L., Mam, M., Kumar, S.: Economic load dispatch in thermal power plant taking real time efficiency as an additional constraints. Int. J. Eng. Res. Technol. (IJERT) 2. ISSN:2278-0181 (2013)

    Google Scholar 

  13. Padhy, N.: Unit commitment – a bibliographical survey. IEEE Trans. Power Syst. 19, 1196–1205. ISSN:0885-8950 (2004)

    Google Scholar 

  14. Kwon, W.H., Han, S.H.: Receding Horizon Control: Model Predictive Control for State Models. Springer, Dordrecht (2006)

    Google Scholar 

  15. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified approach to approximating resource allocation and scheduling. J. ACM (JACM) 48, 1069–1090 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.R.: Putting the “Smarts” into the smart grid: a grand challenge for artificial intelligence. Commun. ACM 55, 86–97 (2012)

    Article  Google Scholar 

  17. Steghöfer, J.-P., Anders, G., Siefert, F., Reif, W.: A system of systems approach to the evolutionary transformation of power management systems. In: Proceedings of INFORMATIK 2013 – Workshop on “Smart Grids”, vol. P-220. Bonner Köllen Verlag, Bonn (2013)

    Google Scholar 

  18. Abouelela, M., El-Darieby, M.: Multidomain hierarchical resource allocation for grid applications. J. Electr. Comput. Eng. 2012 (2012). ISSN:2090-0147

    Google Scholar 

  19. Boudjadar, A., David, A., Kim, J., Larsen, K., Mikučionis, M., Nyman, U., Skou, A.: Hierarchical scheduling framework based on compositional analysis using Uppaal (English). In: Fiadeiro, J. L., Liu, Z., Xue, J. (eds.) Formal Aspects of Component Software, vol. 8348, pp. 61–78. Springer, Springer International Publishing, Cham (2014). ISBN:978-3-319-07601-0

    Chapter  Google Scholar 

  20. Hooker, J.N.: Integrated Methods for Optimization. International Series in Operations Research & Management Science. Springer (2012)

    Book  MATH  Google Scholar 

  21. Schiendorfer, A., Anders, G., Steghöfer, J.-P., Reif, W.: Abstraction of heterogeneous supplier models in hierarchical resource allocation (English). In: Nguyen, N.T., Kowalczyk, R., Duval, B., van den Herik, J., Loiseau, S., Filipe, J. (eds.) Transactions on Computational Collective Intelligence XX. Lecture Notes in Computer Science, vol. 9420, pp. 23–53 (2015)

    Article  Google Scholar 

  22. Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press, Cambridge (1999). ISBN:0-262-72030-2

    Google Scholar 

  23. Schiendorfer, A., Steghöfer, J.-P., Reif, W.: Synthesis and abstraction of constraint models for hierarchical resource allocation problems. In: Proceedings of the 6th International Conference on Agents and Artificial Intelligence (ICAART’14), vol. 2, pp. 15–27. SciTePress, Angers, France (2014)

    Google Scholar 

  24. Schiendorfer, A., Lassner, C., Anders, G., Lienhart, R., Reif, W.: Active learning for efficient sampling of control models of collectives. In: 2015 IEEE 9th International Conference on Self-Adaptive and Self-Organizing Systems (SASO), Cambridge, pp. 51–60 (2015)

    Google Scholar 

  25. Yingvivatanapong, C., Lee, W.-J., Liu, E.: Multi-area power generation dispatch in competitive markets. IEEE Trans. Power Syst. 23, 196–203 (2008)

    Article  Google Scholar 

  26. Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests for classification, regression, density estimation, manifold learning and semi-supervised learning. Technical report MSR-TR-2011-114. Microsoft Research (2011)

    Google Scholar 

  27. Lassner, C., Lienhart, R.: The fertilized forests decision forest library. In: Proceedings of the International Conference on ACM Multimedia (ACMMM’15), Brisbane (2015)

    Google Scholar 

  28. Meseguer, P., Rossi, F., Schiex, T.: Soft constraints. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, vol. 2, pp. 281–328. Elsevier, Amsterdam/Boston (2006)

    Chapter  Google Scholar 

  29. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimization. J. ACM (JACM) 44, 201–236 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: hard and easy problems. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI’95), Montréal, vol. 1, pp. 631–639. Morgan Kaufmann (1995)

    Google Scholar 

  31. Gadducci, F., Hölzl, M., Monreale, G., Wirsing, M.: Soft constraints for lexicographic orders (English). In: Castro, F., Gelbukh, A., González, M. (eds.) Advances in Artificial Intelligence and Its Applications, vol. 8265, pp. 68–79. Springer, Berlin/Heidelberg (2013). ISBN:978-3-642-45113-3

    Chapter  Google Scholar 

  32. Schiendorfer, A., Steghöfer, J.-P., Knapp, A., Nafz, F., Reif, W.: Constraint relationships for soft constraints (English). In: Bramer, M., Petridis, M. (eds.) Research and Development in Intelligent Systems XXX, pp. 241–255. Springer (2013). ISBN:978-3-319-02620-6

    Google Scholar 

  33. Knapp, A., Schiendorfer, A., Reif, W.: Quality over quantity in soft constraints. In: Proceedings of the 26th International Conference on Tools with Artificial Intelligence (ICTAI’2014), Limassol, pp. 453–460 (2014)

    Google Scholar 

  34. Schiendorfer, A., Knapp, A., Steghöfer, J.-P., Anders, G., Siefert, F., Reif, W.: Partial valuation structures for qualitative soft constraints (English). In: Nicola, R.D., Hennicker, R. (eds.) Software, Services, and Systems, vol. 8950, pp. 115–133. Springer, Cham (2015)

    Google Scholar 

  35. Borning, A., Freeman-Benson, B., Wilson, M.: Constraint hierarchies. LISP Symb. Comput. 5, 223–270 (1992). ISSN:0892-4635

    Google Scholar 

  36. Anders, G., Siefert, F., Steghöfer, J.-P., Reif, W.: Trust-based scenarios – predicting future agent behavior in open self-organizing systems (English). In: Elmenreich, W., Dressler, F., Loreto, V. (eds.) Self-Organizing Systems, vol. 8221, pp. 90–102. Springer, Berlin/Heidelberg (2014). ISBN:978-3-642-54139-1

    Chapter  Google Scholar 

  37. Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Academic, Norwell (2001)

    MATH  Google Scholar 

  38. Hentenryck, P.V., Bent, R.: Online Stochastic Combinatorial Optimization. MIT Press (2009) ISBN:978-0262513470

    Google Scholar 

  39. Hochreiter, R., Pflug, G.: Financial scenario generation for stochastic multi-stage decision processes as facility location problems. Ann. Oper. Res. 152, 257–272 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, B., Luh, P., Litvinov, E., Zheng, T., Zhao, F., Zhao, J., Wang, C.: Electricity auctions with intermittent wind generation. In: Power and Energy Society General Meeting, Detroit, pp. 1–8 (2011)

    Google Scholar 

  41. Bouffard, F., Galiana, F.: Stochastic security for operations planning with significant wind power generation. In: Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, pp. 1–11 (2008)

    Google Scholar 

  42. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  43. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2014)

    Google Scholar 

  44. Anders, G., Schiendorfer, A., Steghöfer, J.-P., Reif, W.: Robust scheduling in a self-organizing hierarchy of autonomous virtual power plants. In: 2014 27th International Conference on Architecture of Computing Systems (ARCS), Lübeck, pp. 1–8 (2014)

    Google Scholar 

  45. Shapiro, A.: On complexity of multistage stochastic programs. Oper. Res. Lett. 34, 1–8 (2006). ISSN:0167-6377

    Google Scholar 

  46. Scott, P., Thiébaux, S., van den Briel, M., Van Hentenryck, P.: Residential demand response under uncertainty English. In: Schulte, C. (ed.) Principles and Practice of Constraint Programming, vol. 8124, pp. 645–660. Springer, Berlin/Heidelberg (2013). ISBN:978-3-642-40626-3

    Chapter  Google Scholar 

  47. Ruiz, P., Philbrick, C., Zak, E., Cheung, K., Sauer, P.: Uncertainty management in the unit commitment problem. IEEE Trans. Power Syst. 24, 642–651 (2009). ISSN:0885-8950

    Google Scholar 

  48. Anders, G., Siefert, F., Mair, M., Reif, W.: Proactive guidance for dynamic and cooperative resource allocation under uncertainties. In: 2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems (SASO), London, pp. 21–30 (2014)

    Google Scholar 

  49. Anders, G., Schiendorfer, A., Siefert, F., Steghöfer, J.-P., Reif, W.: Cooperative resource allocation in open systems of systems. ACM Trans. Auton. Adapt. Syst. 10, 11:1–11:44. ISSN:1556-4665 (2015)

    Google Scholar 

  50. Kosak, O., Anders, G., Siefert, F., Reif, W.: An approach to robust resource allocation in large-scale systems of systems. In: 2015 IEEE 9th International Conference on Self-Adaptive and Self-Organizing Systems (SASO), Cambridge, pp. 1–10 (2015)

    Google Scholar 

  51. Klemperer, P.: What really matters in auction design. J. Econ. Perspect. 16, 169–189 (2002)

    Article  Google Scholar 

  52. Kiefhaber, R., Anders, G., Siefert, F., Ungerer, T., Reif, W.: Confidence as a means to assess the accuracy of trust values. In: 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Liverpool, pp. 690–697 (2012)

    Google Scholar 

  53. Ba, S., Pavlou, P.: Evidence of the effect of trust building technology in electronic markets: price premiums and buyer behavior. MIS Q. 26, 243–268 (2002)

    Article  Google Scholar 

  54. Dash, R.K., Jennings, N.R., Parkes, D.C.: Computational-mechanism design: a call to arms. IEEE Intell. Syst. 18, 40–47 (2003)

    Article  Google Scholar 

  55. Anders, G., Steghöfer, J.-P., Siefert, F., Reif, W.: A trust- and cooperation-based solution of a dynamic resource allocation problem. In: 2013 IEEE 7th International Conference on Self-Adaptive and Self-Organizing Systems (SASO), Philadelphia, pp. 1–10 (2013)

    Google Scholar 

  56. Wedde, H.F.: DEZENT – a cyber-physical approach for providing affordable regenerative electric energy in the near future. In: 38th EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA’12), Cesme, pp. 241–249 (2012)

    Google Scholar 

  57. Kok, K., Warmer, C., Kamphuis, R.: PowerMatcher: Multiagent control in the electricity infrastructure. In: Proceedings of the 4th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 75–82. ACM, New York (2005). ISBN:1-59593-093-0

    Google Scholar 

  58. Li, J., Poulton, G., James, G.: Coordination of distributed energy resource agents. Appl. Artif. Intell. 24, 351–380 (2010)

    Article  Google Scholar 

  59. Ströhle, P., Gerding, E.H., de Weerdt, M.M., Stein, S., Robu, V.: Online mechanism design for scheduling non-preemptive jobs under uncertain supply and demand. In: Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems, pp. 437–444. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2014). ISBN:978-1-4503-2738-1

    Google Scholar 

  60. Chalkiadakis, G., Robu, V., Kota, R., Rogers, A., Jennings, N.R.: Cooperatives of distributed energy resources for efficient virtual power plants. In: Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems, vol. 2, pp. 787–794. International Foundation for Autonomous Agents and Multiagent Systems, Taipei (2011). ISBN:0-9826571-6-1, 978-0-9826571-6-4

    Google Scholar 

  61. Vytelingum, P., Ramchurn, S.D., Voice, T.D., Rogers, A., Jennings, N.R.: Trading agents for the smart electricity grid. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 897–904. International Foundation for Autonomous Agents and Multiagent Systems, Toronto (2010). ISBN:978-0-9826571-1-9

    Google Scholar 

  62. Dash, R., Vytelingum, P., Rogers, A., David, E., Jennings, N.: Market-based task allocation mechanisms for limited-capacity suppliers. Syst. Man Cybern. Part A IEEE Trans. Syst. Hum. 37, 391–405 (2007)

    Article  Google Scholar 

  63. Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. Knowl. Eng. Rev. 19, 281–316 (2004)

    Article  Google Scholar 

  64. Anders, G., Siefert, F., Reif, W.: A heuristic for constrained set partitioning in the light of heterogeneous objectives (English). In: Duval, B., van den Herik, J., Loiseau, S., Filipe, J. (eds.) Agents and Artificial Intelligence, vol. 9494, pp. 223–244. Springer (2015). ISBN:978-3-319-27946-6

    Google Scholar 

  65. Chu, P., Beasley, J.: Constraint handling in genetic algorithms: the set partitioning problem (English). J. Heuristics 4, 323–357 (1998). ISSN:1381-1231

    Google Scholar 

  66. Bender, C., Brody, D., Meister, B.: Quantum field theory of partitions. J. Math. Phys. 40, 3239 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  67. Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation. Artif. Intell. 101, 165–200 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  68. Valev, V.: Set partition principles revisited. In: Amin, A., Dori, D., Pudil, P., Freeman, H. (eds.) Advances in Pattern Recognition, vol. 1451, pp. 875–881. Springer, Berlin/Heidelberg (1998). ISBN:978-3-540-64858-1

    Chapter  Google Scholar 

  69. Späth, H.: Anticlustering: maximizing the variance criterion. Control Cybern. 15, 213–218 (1986)

    MATH  Google Scholar 

  70. Eberhardinger, B., Anders, G., Seebach, H., Siefert, F., Reif, W.: A research overview and evaluation of performance metrics for self-organization algorithms. In: 2015 IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops (SASOW), Cambridge, pp. 122–127 (2015)

    Google Scholar 

  71. Younis, O., Fahmy, S.: HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Trans. Mobile Comput. 3, 366–379 (2004). ISSN:1536-1233

    Google Scholar 

  72. Anders, G., Seebach, H., Nafz, F., Steghöfer, J.-P., Reif, W.: Decentralized reconfiguration for self-organizing resource-flow systems based on local knowledge. In: 2011 8th IEEE International Conference and Workshops on Engineering of Autonomic and Autonomous Systems (EASe), Las Vegas, pp. 20–31 (2011)

    Google Scholar 

  73. Al Faruque, M.A., Krist, R., Henkel, J.: ADAM: run-time agent-based distributed application mapping for on-chip communication. In: Proceedings of the 45th ACM/IEEE Design Automation Conference, pp. 760–765. ACM, Anaheim (2008). ISBN:978-1-60558-115-6

    Google Scholar 

  74. Buccafurri, F., Rosaci, D., Sarnè, G., Ursino, D.: An agent-based hierarchical clustering approach for E-commerce environments. In: Bauknecht, K., Tjoa, A, Quirchmayr, G. (eds.) E-Commerce and Web Technologies, vol. 2455, pp. 109–118. Springer, Berlin/New York (2002). ISBN:978-3-540-44137-3

    Chapter  Google Scholar 

  75. Rahwan, T., Ramchurn, S.D., Jennings, N.R., Giovannucci, A.: An anytime algorithm for optimal coalition structure generation. J. Artif. Intell. Res. 34, 521–567 (2009)

    MathSciNet  MATH  Google Scholar 

  76. Alam, S., Dobbie, G., Riddle, P.: An evolutionary particle Swarm optimization algorithm for data clustering. In: IEEE Swarm Intelligence Symposium, St. Louis, pp. 1–6 (2008)

    Google Scholar 

  77. Ogston, E., Overeinder, B., Steen, M.V., Brazier, F.: A method for decentralized clustering in large multi-agent systems. In: Proceedings of the 2nd International Joint Conference on Autonomous Agents and Multiagent Systems, Melbourne, pp. 789–796 (2003)

    Google Scholar 

  78. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability Volume 1: Statistics, pp. 281–297. University of California Press, Berkeley (1967)

    Google Scholar 

  79. Kaufman, L., Rousseeuw, P.: Clustering by Means of Medoids, pp. 405–416. North-Holland, Amsterdam, Netherlands (1987)

    Google Scholar 

  80. Ishioka, T.: An expansion of X-means for automatically determining the optimal number of clusters. In: Proceedings of the International Conference on Computational Intelligence, Calgary, Canada, pp. 91–96 (2005)

    Google Scholar 

  81. Anders, G., Siefert, F., Steghöfer, J.-P., Reif, W.: A decentralized multi-agent algorithm for the set partitioning problem (English). In: Rahwan, I., Wobcke, W., Sen, S., Sugawara, T. (eds.) PRIMA 2012: Principles and Practice of Multi-agent Systems, vol. 7455, pp. 107–121. Springer, Berlin/Heidelberg (2012). ISBN:978-3-642-32728-5

    Chapter  Google Scholar 

  82. Anders, G.: Self-organized robust optimization in open technical systems. PhD thesis, University of Augsburg (2016)

    Google Scholar 

  83. Steghöfer, J.-P., Behrmann, P., Anders, G., Siefert, F., Reif, W.: HiSPADA: self-organising hierarchies for large-scale multi-agent systems. In: Proceedings of the Ninth International Conference on Autonomic and Autonomous Systems (ICAS) (IARIA 2013), pp. 71–76. ISBN:978-1-61208-257-8

    Google Scholar 

  84. Klejnowski, L.: Trusted community: a novel multiagent organisation for open distributed systems. PhD thesis, Leibniz Universität Hannover (2014)

    Google Scholar 

  85. Eberhardinger, B., Seebach, H., Knapp, A., Reif, W.: Towards testing self-organizing, adaptive systems (English). In: Merayo, M., de Oca, E. (eds.) Testing Software and Systems, vol. 8763, pp. 180–185. Springer, Berlin/Heidelberg (2014). ISBN:978-3-662-44856-4

    Chapter  Google Scholar 

Download references

Acknowledgements

This research is partly sponsored by the research unit OC-Trust (FOR 1085) of the German Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerrit Anders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Anders, G. et al. (2016). Specification and Design of Trust-Based Open Self-Organising Systems. In: Reif, W., et al. Trustworthy Open Self-Organising Systems. Autonomic Systems. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-29201-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29201-4_2

  • Published:

  • Publisher Name: Birkhäuser, Cham

  • Print ISBN: 978-3-319-29199-4

  • Online ISBN: 978-3-319-29201-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics