About Truth and Types

Part of the Progress in Computer Science and Applied Logic book series (PCS, volume 28)


We investigate a weakening of the classical theory of Frege structures and extensions thereof which naturally interpret (predicative) theories of explicit types and names à la Jäger.


Explicit Type Frege Structures Explicit Mathematics Propositional Function Predicate Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P. Aczel, Frege structures and the notions of proposition, truth and set, in The Kleene Symposium, ed. by J. Barwise, H.J. Keisler, K. Kunen (North Holland, Amsterdam, 1980), pp. 31–59CrossRefGoogle Scholar
  2. 2.
    J. Burgess, Friedman and the axiomatization of Kripke’s theory of truth, in Foundational Adventures: Essays in Honor of Harvey M. Friedman, ed by N. Tennant (College Publications, London, 2014), pp. 125–148Google Scholar
  3. 3.
    A. Cantini, Levels of implications and type free theories of partial classifications with approximation operator. Zeitschrift f. Math. Logik u. Grundlagen 38, 107–141 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    A. Cantini, P. Minari, Uniform inseparability in explicit mathematics. J. Symbolic Logic 61, 313–326 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    A. Cantini, On a Russellian paradox about propositions and truth, in One Hundred Years of Russell’s Paradox. Mathematics, Logic and Philosophy ed by G. Link (Walter de Gruyter, Berlin, 2004), pp. 259–284Google Scholar
  6. 6.
    A. Cantini, Logical Frameworks for Truth and Abstraction, Studies in Logic and the Foundations of Mathematics, vol. 135 (North Holland, Amsterdam, 1996)zbMATHGoogle Scholar
  7. 7.
    B.A. Davey, H.A. Priestley, Introduction to Lattices and Order, 2nd edn. (Cambridge, 2002)Google Scholar
  8. 8.
    S. Eberhard, T. Strahm, Weak theories of truth and explicit mathematics, in Logic, Construction, Computation, ed. by U. Berger, H. Diener, P. Schuster (Ontos Verlag, 2012), pp. 156–183Google Scholar
  9. 9.
    S. Feferman, Constructive theories of operations and classes, in Logic Colloquium ’78 ed by M. Boffa, et al. (North-Holland, 1979), pp. 159–224Google Scholar
  10. 10.
    S. Feferman, Axioms for determinate truth. Rev. Symbolic Logic 1, 204–217 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    S. Feferman, Reflecting on incompleteness. J. Symbolic Logic 56, 1–49 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    S. Feferman, Does reductive proof theory have a viable rationale? Erkenntnis 53, 63–96 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    K. Fujimoto, Relative truth definability of axiomatic truth theories. Bull. Symbolic Logic 16, 305–344 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    R. Flagg, J. Myhill, Implication and analysis in classical Frege structures. Ann. Pure Appl. Logic 34, 33–85 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    H. Friedman, M. Sheard, An axiomatic approach to self-referential truth. Ann. Pure Appl. Logic 33, 1–21 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    T. Glass, On power set in explicit mathematics. J. Symbolic Logic 61, 468–489 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    V. Halbach, Axiomatic Theories of Truth (Cambridge University Press, Cambridge, 2011)CrossRefzbMATHGoogle Scholar
  18. 18.
    G. Jäger, Type theory and explicit mathematics, in Logic Colloquium ’87, Studies in Logic and the Foundations of Mathematics, vol. 129 (North-Holland, Amsterdam, 1989), pp. 117–135Google Scholar
  19. 19.
    G. Jäger, Power types in explicit mathematics? J. Symbolic Logic 62, 1141–1146 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    G. Jäger, R. Kahle, A. Setzer, T. Strahm, The proof theoretic analysis of transfinitely iterated fixed point theories. J. Symbolic Logic 64, 53–67 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    G. Jäger, T. Strahm, Totality in applicative theories. Ann. Pure Appl. Logic 74, 105–120 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    R. Kahle, Truth in applicative theories. Studia Logica 68, 103–128 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    R. Kahle, T. Studer, A theory of explicit mathematics equivalent to \(ID_1\), in Computer Science Logic (Fischbachau), Lecture Notes in Computer Science, 1862 (Springer, Berlin, 2000), pp. 356–370Google Scholar
  24. 24.
    G.E. Leigh, Conservativity for theories of compositional truth via cut elimination. J. Symbolic Logic, 80, 845–865 (2015)Google Scholar
  25. 25.
    Y.N. Moschovakis, Elementary Induction on Abstract Structures, Studies in Logic and the Foundations of Mathematics, vol. 77 (North Holland, Amsterdam, 1974)Google Scholar
  26. 26.
    W. Pohlers, Proof Theory (Springer, Berlin-New York, 2009)zbMATHGoogle Scholar
  27. 27.
    H. Schwichtenberg, S. Wainer, in Proofs and Computations, Perspectives in Logic (ASL and Cambridge University Press, Cambridge, 2012)Google Scholar
  28. 28.
    T. Strahm, Theories with self-application and computational complexity. Inf. Comput. 185, 263–297 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Dipartimento di Lettere e FilosofiaUniversità degli Studi di FirenzeFlorenceItaly

Personalised recommendations