Skip to main content

Higman’s Lemma and Its Computational Content

  • Chapter
  • First Online:
Advances in Proof Theory

Abstract

Higman’s Lemma is a fascinating result in infinite combinatorics, with manyfold applications in logic and computer science. It has been proven several times using different formulations and methods. The aim of this paper is to look at Higman’s Lemma from a computational and comparative point of view. We give a proof of Higman’s Lemma that uses the same combinatorial idea as Nash-Williams’ indirect proof using the so-called minimal bad sequence argument, but which is constructive. For the case of a two letter alphabet such a proof was given by Coquand. Using more flexible structures, we present a proof that works for an arbitrary well-quasiordered alphabet. We report on a formalization of this proof in the proof assistant Minlog, and discuss machine extracted terms (in an extension of Gödel’s system T) expressing its computational content.

Dedicated to Gerhard Jäger on the occasion of his 60th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://coq.inria.fr/V8.2pl1/contribs/HigmanS.html.

  2. 2.

    A similar phenomenon is addressed in Coq [5] by the so-called Set/Prop distinction. However, enriching the logic by n.c. universal quantification (and similarly n.c. implication) seems to be more flexible.

  3. 3.

    See http://www.minlog-system.de.

  4. 4.

    See http://www.git/minlog/examples/bar/higman.scm.

References

  1. U. Berger, Program extraction from normalization proofs, in Typed Lambda Calculi and Applications, ed. by M. Bezem, J. Groote, LNCS, vol. 664, (Springer, Berlin, 1993), pp. 91–106

    Google Scholar 

  2. U. Berger, K. Miyamoto, H. Schwichtenberg, M. Seisenberger, Minlog–A Tool for Program Extraction Supporting Algebras and Coalgebras, in Algebra and Coalgebra in Computer Science, ed. by A. Corradini, B. Klin, C. Cîrstea, CALCO’11, LNCS, vol. 6859, (Springer, Berlin, 2011), pp. 393–399

    Google Scholar 

  3. S. Berghofer, A constructive proof of Higman’s lemma in Isabelle, Types for Proofs and Programs. Lecture Notes in Computer Science, vol. 3085 (Springer, Berlin, 2004), pp. 66–82

    Google Scholar 

  4. E.A. Cichon, E.T. Bittar, Ordinal recursive bounds for Higman’s theorem. Theor. Comput. Sci. 201(1–2), 63–84 (1998)

    Google Scholar 

  5. Coq Development Team. The Coq Proof Assistant Reference Manual—Version 8.2. Inria (2009)

    Google Scholar 

  6. T. Coquand. A proof of Higman’s lemma by structural induction. Unpublished Manuscript, April 1993

    Google Scholar 

  7. T. Coquand, D. Fridlender, A proof of Higman’s lemma by structural induction. Unpublished Manuscript (1993), http://www.cse.chalmers.se/~coquand/open1.ps, Nov 1993

  8. D. de Jongh, R. Parikh, Well partial orderings and their order types. Indagationes Mathematicae 14, 195–207 (1977)

    Google Scholar 

  9. D. Fridlender, Ramsey’s Theorem in Type Theory. Licentiate Thesis, Chalmers University of Technology and University of Göteburg, 1993

    Google Scholar 

  10. D. Fridlender. Higman’s Lemma in Type Theory. Ph.D. thesis, Chalmers University of Technology, Göteborg, 1997

    Google Scholar 

  11. J. Goubault-Larrecq, A constructive proof of the topological Kruskal theorem, in Mathematical foundations of computer science 2013, ed. by K. Chatterjee, J. Sgall, 38th international symposium, MFCS 2013, LNCS, vol. 8087, (Springer, Berlin, 2013), pp. 22–41

    Google Scholar 

  12. J.-Y. Girard, Proof Theory and Logical Complexity (Bibliopolis, Napoli, 1987)

    Google Scholar 

  13. R. Hasegawa, Well-ordering of algebra and Kruskal’s theorem, in Logic, Language and Computation, ed. by N.D. Jones, M. Hagiya, M. Sato, Festschrift in Honor of Satoru Takasu. Lecture Notes in Computer Science, vol. 792, (Springer, Berlin, 1994), pp. 133–172

    Google Scholar 

  14. H. Herbelin, A program from an A-translated impredicative proof of Higman’s lemma (1994), http://www.lix.polytechnique.fr/coq/pylons/contribs/files/HigmanNW/trunk/HigmanNW.Higman.html

  15. G. Higman, Ordering by divisibility in abstract algebras. Proc. London Math. Soc. 2, 326–336 (1952)

    Google Scholar 

  16. F.-J. Martín-Mateos, J.-L. Ruiz-Reina, J.-A. Alonso, M.-J. Hidalgo, Proof pearl: a formal proof of Higman’s lemma in ACL2. J. Autom. Reasoning 47(3), 229–250 (2011)

    Google Scholar 

  17. C. Murthy, Extracting constructive content from classical proofs. Technical Report 90–1151, Department of Computer Science, Ph.D. thesis. Cornell University, Ithaca, New York, 1990

    Google Scholar 

  18. C.R. Murthy, J.R. Russell, A constructive proof of Higman’s lemma, in Proceedings of the Sixth Symposium on Logic in Computer Science, pp. 257–267 (1990)

    Google Scholar 

  19. C. Nash-Williams, On well-quasi-ordering finite trees. Proc. Cambridge Phil. Soc. 59, 833–835 (1963)

    Google Scholar 

  20. M. Ogawa, Generation of a linear time query processing algorithm based on well-quasi-orders, in TACS ’01 Proceedings of the 4th International Symposium on Theoretical Aspects of Computer Software, LNCS, vol. 2215 (Springer, Berlin, 2001), pp. 283–297

    Google Scholar 

  21. T. Powell, Applying Gödel’s Dialectica interpretation to obtain a constructive proof of Higman’s lemma, in Proceedings of Classical Logic and Computation (CLAC’12), EPTCS, vol. 97 pp. 49–62 (2012)

    Google Scholar 

  22. M. Rathjen, A. Weiermann, Proof-theoretic investigations on Kruskal’s theorem. Ann. Pure a. Appl. Logic 60, 49–88 (1993)

    Google Scholar 

  23. F. Richman, G. Stolzenberg, Well quasi-ordered sets. Adv. Math. 97, 145–153 (1993)

    Google Scholar 

  24. D. Schmidt, Well-Orderings and Their Maximal Order Types (Mathematisches Institut der Universität, Habilitationsschrift, Heidelberg, 1979)

    Google Scholar 

  25. K. Schütte, S.G. Simpson, Ein in der reinen Zahlentheorie unbeweisbarer Satz über endliche Folgen von natürlichen Zahlen. Archiv für Mathematische Logik und Grundlagenforschung 25, 75–89 (1985)

    Google Scholar 

  26. H. Schwichtenberg, S.S. Wainer, Proofs and Computations (Association for Symbolic Logic (Cambridge University Press, Cambridge, Perspectives in Logic, 2012)

    Google Scholar 

  27. M. Seisenberger, Kruskal’s tree theorem in a constructive theory of inductive definitions, in Reuniting the Antipodes—Constructive and Nonstandard Views of the Continuum, ed. by P. Schuster, U. Berger, H. Osswald, Synthese Library, vol. 306 (Kluwer Academic Publisher, Dordrecht, 2001), pp. 241–255

    Google Scholar 

  28. M. Seisenberger, An inductive version of Nash-Williams Minimal-Bad-Sequence argument for Higman’s lemma, in Types for Proofs and Programs, LNCS, vol. 2277 (Springer, Berlin, 2001)

    Google Scholar 

  29. M. Seisenberger, On the Constructive Content of Proofs. Ph.D. thesis, Mathematisches Institut der Universität München, 2003

    Google Scholar 

  30. C. Sternagel, Certified Kruskal’s tree theorem. J. Formalized Reasoning 7(1), 45–62 (2014)

    Google Scholar 

  31. H. Touzet, Propriétés combinatoires pour la terminaison de systèmes de réécriture. Ph.D. thesis, Université Henri Poincaré, Nancy, 1997

    Google Scholar 

  32. H. Touzet, A characterisation of multiply recursive functions with Higman’s lemma. Inf. Comput. 178, 534–544 (2002)

    Google Scholar 

  33. V. Veldman, M. Bezem, Ramsey’s theorem and the pigeonhole principle in intuitionistic mathematics. J. London Math. Soc. 47, 193–211 (1993)

    Google Scholar 

  34. W. Veldman, An intuitionistic proof of Kruskal’s theorem. Arch. for Math. Logic 43(2), 215–264 (2004)

    Google Scholar 

  35. D. Vytiniotis, T. Coquand, D. Wahlstedt, Stop when you are almost-full–Adventures, in constructive termination, in Proceedings, ITP 2012, ed. by L. Beringer, A. Felty, LNCS, vol. 7406, (Springer Verlag, Berlin, Heidelberg, New York, 2012), pp. 250–265

    Google Scholar 

Download references

Acknowledgments

We would like to thank Daniel Fridlender and Iosif Petrakis for helpful contributions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Schwichtenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schwichtenberg, H., Seisenberger, M., Wiesnet, F. (2016). Higman’s Lemma and Its Computational Content. In: Kahle, R., Strahm, T., Studer, T. (eds) Advances in Proof Theory. Progress in Computer Science and Applied Logic, vol 28. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-29198-7_11

Download citation

Publish with us

Policies and ethics