Skip to main content

Abstract

Inhalation injury directly damages the lung parenchyma and increases the mortality associated with burn injury. Timely diagnosis and appropriate treatment of inhalation injury are the keys to improving survival. In practice, the term inhalation injury denotes a spectrum of different airway injury mechanisms, each requiring unique diagnostic paradigms and treatment algorithm. This chapter provides an understanding of inhalation injury pathophysiology as well as a roadmap to effectively navigate the diagnosis and treatment of inhaled toxins and smoke effects on lung function in inhalation injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Burn Association National Burn Repository 2012 Report. American Burn Association NBR Advisory Committee. Chicago, IL.

    Google Scholar 

  2. Chen MC, Chen MH, Wen BS, et al. The impact of inhalation injury in patients with small and moderate burns. Burns. 2014;40(8):1481–6. doi:10.1016/j.burns.2014.06.016.

    Article  PubMed  Google Scholar 

  3. Taylor SL, Sen S, Greenhalgh DG, et al. A competing risk analysis for hospital length of stay in patients with burns. JAMA Surg. 2015;150(5):450–6.

    Article  PubMed  Google Scholar 

  4. Traber DL, Herndon DN, Soejima K. The pathophysiology of inhalation injury. In: Total burn care. 2nd ed. London: W.B. Saunders; 2002. p. 221–231.

    Google Scholar 

  5. Birke MM, Clarke FB. Inhalation of toxic products from fires. Bull NY Acad Med. 1981;57:997–1013.

    Google Scholar 

  6. Centers for Disease Control and Prevention. Carbon monoxide-related deaths-United States, 1999–2004. 2007;56:1309–10.

    Google Scholar 

  7. Weaver LK. Carbon monoxide poisoning. Crit Care Clin. 1999;15:297–317.

    Article  CAS  PubMed  Google Scholar 

  8. Hardy KR, Thom SR. Pathophysiology and treatment of carbon monoxide poisoning. J Clin Tox. 1994;32(6):613–29.

    CAS  Google Scholar 

  9. Jasper BW, Hopkins RO, Duker HV, Weaver LK. Affective outcome following carbon monoxide poisoning: prospective longitudinal study. Cogn Behav Neur. 2005;18(2):127–34.

    Article  Google Scholar 

  10. Demling RH. Burn care in the immediate resuscitation period. In: New York: Scientific American Surgery; 1995. p. 1–16.

    Google Scholar 

  11. Crapo RO. Smoke inhalation injuries. JAMA. 1981;246(18):1694–6.

    Google Scholar 

  12. Hart GB, Strauss MB, Lennon PA, Whitcraft III D. Treatment of smoke inhalation by hyperbaric oxygen. J Emerg Med. 1985;3:211–5.

    Article  CAS  PubMed  Google Scholar 

  13. Mathieu D, Wattel F, Mathieu-Nolf M, Durak C, et al. Randomized prospective study comparing the effect of HBO vs. 12 hours NBO in non-comatose CO-poisoned patients: results of the preliminary analysis. Undersea Hyperbar Med. 1996;23(Suppl):7. abstract.

    Google Scholar 

  14. Raphael JC, Elkharrat D, Jars-Guincestre M-C, Chastang C, et al. Trial of normobaric and hyperbaric oxygen for acute carbon monoxide intoxication. Lancet. 1989;2:414–9.

    Article  CAS  PubMed  Google Scholar 

  15. Raphael JC, Chevret S, Driheme A, Annane D. Managing carbon monoxide poisoning with hyperbaric oxygen (abstract). J Toxicol-Clin Tox. 2004;42:455–6.

    Google Scholar 

  16. Scheinkestel CD, Bailey M, Myles PS, Jones K, et al. Hyperbaric or normobaric oxygen for acute carbon monoxide poisoning: a randomized controlled clinical trial. Med J Austral. 1999;170:203–10.

    CAS  PubMed  Google Scholar 

  17. Thom SR, Taber RL, Mendiguren II, Clark JM, et al. Delayed neurologic sequelae after carbon monoxide poisoning: prevention by treatment with hyperbaric oxygen. Ann Emer Med. 1995;25:474–80.

    Article  CAS  Google Scholar 

  18. Bwalya A, Lougheed G, Kashef A, Saber H. Survey results of combustible contents and floor areas in Canadian multi-family dwellings. Fire Technol. 2011;47:1121–40.

    Article  Google Scholar 

  19. Clark CJ, Campbell D, Reid WH. Blood carboxyhaemoglobin and cyanide levels in fire survivors. Lancet. 1981;1:1332–5.

    Article  CAS  PubMed  Google Scholar 

  20. Woolley WD. Nitrogen containing products from the thermal decomposition of flexible polyurethane foams. Br Polymer J. 1972;4:27–43.

    Article  CAS  Google Scholar 

  21. Bell RH, Stemmer KL, Barkley W, Hollingsworth LD. Cyanide toxicity from the thermal degradation of rigid polyurethane foam. Am Ind Hyg Assoc J. 1979;40:757–62.

    Article  CAS  PubMed  Google Scholar 

  22. Terrill JB, Montgomery RR, Reinhardt CF. Toxic gases from fires. Science. 1978;200:1343–7.

    Article  CAS  PubMed  Google Scholar 

  23. Cahalane M, Demling RH. Early respiratory abnormalities from smoke inhalation. JAMA. 1984;251:771–3.

    Article  CAS  PubMed  Google Scholar 

  24. Fein A, Leff A, Hopewell PC. Pathophysiology and management of the complications resulting from fire and the inhaled products of combustion: review of the literature. Crit Care Med. 1980;8:94–8.

    Article  CAS  PubMed  Google Scholar 

  25. Burgess WA, Treitman RD, Gold A. Air contaminants in structural firefighting. Springfield, VA: National Technical Information Service Publication PB 299017, US Dept of Commerce, 1979.

    Google Scholar 

  26. Silverman SH, Purdue GF, Hunt JL, Bost RO. Cyanide toxicity in burned patients. J Trauma. 1988;28:171–6.

    Article  CAS  PubMed  Google Scholar 

  27. Wetherell HR. The occurrence of cyanide in the blood of fire victims. J Forensic Sci. 1966;11:167–73.

    CAS  PubMed  Google Scholar 

  28. Barillo DJ, Goode R, Rush BF, Lin RL, Freda A, Anderson EJ. Lack of correlation between carboxyhemoglobin and cyanide in smoke inhalation injury. Curr Surg. 1986;43:421–3.

    CAS  PubMed  Google Scholar 

  29. Barillo DJ, Rush BF, Goode R, Lin RL, Freda A, Anderson EJ. Is ethanol the unknown toxin in smoke inhalation injury? Am Surg. 1986;52:641.

    CAS  PubMed  Google Scholar 

  30. Gettler AO, Baine JO. The toxicology of cyanide. Am J Med Sci. 1938;195:182–98.

    Article  CAS  Google Scholar 

  31. Graham DL, Laman D, Theodore J, Robin ED. Acute cyanide poisoning complicated by lactic acidosis and pulmonary edema. Arch Intern Med. 1977;137:1051–5.

    Article  CAS  PubMed  Google Scholar 

  32. Jones J, McMullen MJ, Dougherty J. Toxic smoke inhalation: cyanide poisoning in fire victims. Am J Emerg Med. 1987;5:317–21.

    Article  CAS  PubMed  Google Scholar 

  33. Hartzell GE. Combustion products and their effects on life safety. In: Cote AE, Linville JL, editors. Fire protection handbook. 17th ed. Quincy, MA: National Fire Protection Association; 1991.

    Google Scholar 

  34. Cottrell JE, Casthely P, Brodie JD, Patel K, Klein A, Turndorf H. Prevention of nitroprusside-induced cyanide toxicity with hydroxocobalamin. N Engl J Med. 1978;298:809–11.

    Article  CAS  PubMed  Google Scholar 

  35. Hall AH, Dart R, Bogdan G. Sodium thiosulfate or hydroxocobalamin for the empiric treatment of cyanide poisoning? Ann Emerg Med. 2007;49:806–13.

    Article  PubMed  Google Scholar 

  36. DesLauriers CA, Burda AM, Whal M. Hydroxocobalamin as a cyanide antidote. Am J Therapuetics. 2006;13:161–5.

    Article  Google Scholar 

  37. Smith DL, Cairns BA, Ramadan F, et al. Effect of inhalation injury, burn size, and age on mortality: a study of 1447 consecutive burn patients. J Trauma. 1994;37:655–9.

    Article  CAS  PubMed  Google Scholar 

  38. Edelman DA, White MT, Tyburski JG, Wilson RF. Factors affecting prognosis of inhalation injury. J Burn Care Res. 2006;27:848–53.

    Article  PubMed  Google Scholar 

  39. Colohan SM. Predicting prognosis in thermal burns with associated inhalational injury: a systematic review of prognostic factors in adult burn victims. J Burn Care Res. 2010;31:529–39.

    Article  PubMed  Google Scholar 

  40. Carvajal HF, Linares HA, Brouhard BH. Relationship of burn size to vascular permeability changes in rates. Surg Gynecol Obstet. 1979;149:193–202.

    CAS  PubMed  Google Scholar 

  41. Harms BA, Bodai BI, Kramer GC, Demling RH. Microvascular fluid and protein flux in pulmonary and systemic circulations after thermal injury. Microvasc Res. 1982;23:77–86.

    Article  CAS  PubMed  Google Scholar 

  42. Ward PA, Till GO. Pathophysiologic events related to thermal injury of skin. J Trauma. 1990;30:S75–9.

    Article  CAS  PubMed  Google Scholar 

  43. Wyncoll DL, Evans TW. Acute respiratory distress syndrome. Lancet. 1999;354:497–501.

    Article  CAS  PubMed  Google Scholar 

  44. American Burn Association. Airway management and smoke inhalation injury. In: Advanced burn life support manual. Chicago: American Burn Association; 2004. p. 16–20.

    Google Scholar 

  45. Mosier MJ, Pham TN, Park DR, Simmons J, et al. Predictive value of bronchoscopy in assessing the severity of inhalation injury. J Burn Care Res. 2012;33(1):65–73.

    Article  PubMed  Google Scholar 

  46. Oh JS, Chung KK, Allen A, Batchinsky AI, et al. Admission chest CT complements fiberoptic bronchoscopy in prediction of adverse outcomes in thermally injured patients. J Burn Care Res. 2012;33:532–8.

    Article  PubMed  Google Scholar 

  47. Palmieri TL. Use of beta-agonists in inhalation injury. J Burn Care Res. 2009;30(1):156–9.

    Article  PubMed  Google Scholar 

  48. Miller AC, Elamin EM, Suffredini AF. Inhaled anticoagulation regimens for the treatment of smoke inhalation-associated acute lung injury: a systematic review. Crit Care Med. 2014;42:413–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Murabit A, Tredget EE. Review of burn injuries secondary to home oxygen. J Burn Care Res. 2012;33(2):212–7.

    Article  PubMed  Google Scholar 

  50. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.

    Article  Google Scholar 

  51. Dries DJ. Key questions in ventilator management of the burn-injured patient. J Burn Care Res. 2009;30:211–20.

    Article  PubMed  Google Scholar 

  52. Carman B, Cahill T, Warden G, et al. A prospective, randomized comparison of the volume diffusive respirator vs conventional ventilation for ventilation of burned children. J Burn Care Rehabil. 2001;13:444–8.

    Google Scholar 

  53. Palmieri TL, Jackson W, Greenhalgh DG. Benefits of early tracheostomy in severely burned children. Crit Care Med. 2002;30(4):922–4.

    Article  PubMed  Google Scholar 

  54. Darling GE, Keresteci MA, Ibanez D, Pugash RA, Peters WJ, Neligan PC. Pulmonary complications in inhalation injuries with associated cutaneous burn. J Trauma. 1996;40:83–9.

    Article  CAS  PubMed  Google Scholar 

  55. La Cal MA, Cerda E, Garcia-Hierro P, et al. Pneumonia in patients with severe burns: a classification according to the concept of the carrier state. Chest. 2001;119:1160–5.

    Article  Google Scholar 

  56. Still J, Newton T, Friedman B, Furhman S, Law E, Dawson J. Experience with pneumonia in acutely burned patients requiring ventilator support. Am Surg. 2000;66:206–9.

    CAS  PubMed  Google Scholar 

  57. The ARDS Definition Task Force. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307:2526–33.

    Google Scholar 

  58. Ong YS, Samuel M, Song C. Meta-analysis of early excision of burns. Burns. 2006;32(2):145–50.

    Google Scholar 

  59. Belenkiy SM, Buel AR, Cannon JW, Sine CR, et al. Acute respiratory distress syndrome in wartime military burns: application of the Berlin criteria. J Trauma Acute Care Surg. 2014;76:821–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina L. Palmieri M.D., F.A.C.S., F.C.C.M. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Palmieri, T.L. (2016). Breathing. In: Greenhalgh, D. (eds) Burn Care for General Surgeons and General Practitioners . Springer, Cham. https://doi.org/10.1007/978-3-319-29161-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29161-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29159-8

  • Online ISBN: 978-3-319-29161-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics