Skip to main content

Blood Pressure Variability, Antihypertensive Therapy and Stroke Risk

  • Chapter
  • First Online:
  • 2996 Accesses

Part of the book series: Clinical Hypertension and Vascular Diseases ((CHVD))

Abstract

Raised blood pressure is an important predictor of stroke risk. Over time it has become apparent that stroke risk prediction may be enhanced by blood pressure measures other than usual office (mean) cuff blood pressure determinations. Blood pressure variability and circadian variations of blood pressure such as morning surge of blood pressure and nocturnal dipping status (e.g., non-dipping, exaggerated dipping) have proven to be useful indicators of stroke risk. Such features of blood pressure status may be captured by ambulatory blood pressure monitoring which is now considered a valuable technology for determination of blood pressure status. In this chapter we review circadian patterns and types of blood pressure variability and discuss blood pressure variability as a risk for stroke, the means to measure it, its long-term consequences, and how blood pressure variability is being incorporated into stroke prevention guidelines for diagnosis and treatment of hypertension.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gorelick PB, Farooq MU, Min J. Population-based approaches for reducing stroke risk. Expert Rev Cardiovasc Ther. 2015;13(1):49–56.

    Article  CAS  PubMed  Google Scholar 

  2. Gorelick PB, Goldstein LB, Ovbiagele B. New guidelines to reduce risk of atherosclerotic cardiovascular disease: implications for stroke prevention in 2014. Stroke. 2014;45(4):945–7.

    Article  PubMed  Google Scholar 

  3. Gorelick PB. Reducing blood pressure variability to prevent stroke? Lancet Neurol. 2010;9(5):448–9.

    Article  PubMed  Google Scholar 

  4. Lawes CM, Bennett DA, Feigin VL, Rodgers A. Blood pressure and stroke: an overview of published reviews. Stroke. 2004;35(4):1024.

    PubMed  Google Scholar 

  5. Sundstrom J, Arima H, Jackson R, et al. Effects of blood pressure reduction in mild hypertension: a systematic review and meta-analysis. Ann Intern Med. 2015;162(3):184–91.

    Article  PubMed  Google Scholar 

  6. Blood Pressure Lowering Treatment Trialists C, Sundstrom J, Arima H, et al. Blood pressure-lowering treatment based on cardiovascular risk: a meta-analysis of individual patient data. Lancet. 2014;384(9943):591–8.

    Article  Google Scholar 

  7. Carlberg B, Lindholm LH. Stroke and blood-pressure variation: new permutations on an old theme. Lancet. 2010;375(9718):867–9.

    Article  PubMed  Google Scholar 

  8. Rothwell PM. Limitations of the usual blood-pressure hypothesis and importance of variability, instability, and episodic hypertension. Lancet. 2010;375(9718):938–48.

    Article  PubMed  Google Scholar 

  9. Rothwell PM, Howard SC, Dolan E, et al. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet. 2010;375(9718):895–905.

    Article  PubMed  Google Scholar 

  10. Webb AJ, Fischer U, Mehta Z, Rothwell PM. Effects of antihypertensive-drug class on interindividual variation in blood pressure and risk of stroke: a systematic review and meta-analysis. Lancet. 2010;375(9718):906–15.

    Article  CAS  PubMed  Google Scholar 

  11. Rothwell PM, Howard SC, Dolan E, et al. Effects of beta blockers and calcium-channel blockers on within-individual variability in blood pressure and risk of stroke. Lancet Neurol. 2010;9(5):469–80.

    Article  CAS  PubMed  Google Scholar 

  12. Cooke HM, Lynch A. Biorhythms and chronotherapy in cardiovascular disease. Am J Hosp Pharm. 1994;51(20):2569–80.

    CAS  PubMed  Google Scholar 

  13. Muller JE, Mangel B. Circadian variation and triggers of cardiovascular disease. Cardiology. 1994;85 Suppl 2:3–10.

    Article  PubMed  Google Scholar 

  14. Smolensky MH, D’Alonzo GE. Medical chronobiology: concepts and applications. Am Rev Respir Dis. 1993;147(6 Pt 2):S2–19.

    Article  CAS  PubMed  Google Scholar 

  15. White WB. Circadian variation of blood pressure: clinical relevance and implications for cardiovascular chronotherapeutics. Blood Press Monit. 1997;2(1):47–51.

    PubMed  Google Scholar 

  16. Elliott WJ. Circadian variation in the timing of stroke onset: a meta-analysis. Stroke. 1998;29(5):992–6.

    Article  CAS  PubMed  Google Scholar 

  17. Cohen MC, Rohtla KM, Lavery CE, Muller JE, Mittleman MA. Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. Am J Cardiol. 1997;79(11):1512–6.

    Article  CAS  PubMed  Google Scholar 

  18. Kario K, Pickering TG, Umeda Y, et al. Morning surge in blood pressure as a predictor of silent and clinical cerebrovascular disease in elderly hypertensives: a prospective study. Circulation. 2003;107(10):1401–6.

    Article  PubMed  Google Scholar 

  19. Kario K. Morning surge in blood pressure and cardiovascular risk: evidence and perspectives. Hypertension. 2010;56(5):765–73.

    Article  CAS  PubMed  Google Scholar 

  20. Mancia G, Facchetti R, Bombelli M, Grassi G, Sega R. Long-term risk of mortality associated with selective and combined elevation in office, home, and ambulatory blood pressure. Hypertension. 2006;47(5):846–53.

    Article  CAS  PubMed  Google Scholar 

  21. White WB, Gulati V. Managing hypertension with ambulatory blood pressure monitoring. Curr Cardiol Rep. 2015;17(2):2.

    Article  PubMed  Google Scholar 

  22. Di Iorio A, Marini E, Lupinetti M, Zito M, Abate G. Blood pressure rhythm and prevalence of vascular events in hypertensive subjects. Age Ageing. 1999;28(1):23–8.

    Article  PubMed  Google Scholar 

  23. Harshfield GA, Hwang C, Grim CE. Circadian variation of blood pressure in blacks: influence of age, gender and activity. J Hum Hypertens. 1990;4(1):43–7.

    CAS  PubMed  Google Scholar 

  24. Sherwood A, Thurston R, Steffen P, Blumenthal JA, Waugh RA, Hinderliter AL. Blunted nighttime blood pressure dipping in postmenopausal women. Am J Hypertens. 2001;14(8 Pt 1):749–54.

    Article  CAS  PubMed  Google Scholar 

  25. Cuspidi C, Giudici V, Negri F, Sala C. Nocturnal nondipping and left ventricular hypertrophy in hypertension: an updated review. Expert Rev Cardiovasc Ther. 2010;8(6):781–92.

    Article  PubMed  Google Scholar 

  26. Fan HQ, Li Y, Thijs L, et al. Prognostic value of isolated nocturnal hypertension on ambulatory measurement in 8711 individuals from 10 populations. J Hypertens. 2010;28(10):2036–45.

    Article  CAS  PubMed  Google Scholar 

  27. Kario K, Shimada K. Risers and extreme-dippers of nocturnal blood pressure in hypertension: antihypertensive strategy for nocturnal blood pressure. Clin Exp Hypertens. 2004;26(2):177–89.

    Article  PubMed  Google Scholar 

  28. Kario K, Matsuo T, Kobayashi H, Imiya M, Matsuo M, Shimada K. Nocturnal fall of blood pressure and silent cerebrovascular damage in elderly hypertensive patients. Advanced silent cerebrovascular damage in extreme dippers. Hypertension. 1996;27(1):130–5.

    Article  CAS  PubMed  Google Scholar 

  29. Kario K, Shimada K, Pickering TG. Abnormal nocturnal blood pressure falls in elderly hypertension: clinical significance and determinants. J Cardiovasc Pharmacol. 2003;41 Suppl 1:S61–6.

    CAS  PubMed  Google Scholar 

  30. Pierdomenico SD, Bucci A, Costantini F, Lapenna D, Cuccurullo F, Mezzetti A. Circadian blood pressure changes and myocardial ischemia in hypertensive patients with coronary artery disease. J Am Coll Cardiol. 1998;31(7):1627–34.

    Article  CAS  PubMed  Google Scholar 

  31. Frattola A, Parati G, Cuspidi C, Albini F, Mancia G. Prognostic value of 24-hour blood pressure variability. J Hypertens. 1993;11(10):1133–7.

    Article  CAS  PubMed  Google Scholar 

  32. Julius S, Kjeldsen SE, Weber M, et al. Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: the VALUE randomised trial. Lancet. 2004;363(9426):2022–31.

    Article  CAS  PubMed  Google Scholar 

  33. Fagard RH, Celis H, Thijs L, et al. Daytime and nighttime blood pressure as predictors of death and cause-specific cardiovascular events in hypertension. Hypertension. 2008;51(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  34. Patel PV, Wong JL, Arora R. The morning blood pressure surge: therapeutic implications. J Clin Hypertens (Greenwich). 2008;10(2):140–5.

    Article  Google Scholar 

  35. Bursztyn M, Ginsberg G, Hammerman-Rozenberg R, Stessman J. The siesta in the elderly: risk factor for mortality? Arch Intern Med. 1999;159(14):1582–6.

    Article  CAS  PubMed  Google Scholar 

  36. Bursztyn M, Mekler J, Ben-Ishay D. The siesta and ambulatory blood pressure: is waking up the same in the morning and afternoon? J Hum Hypertens. 1996;10(5):287–92.

    CAS  PubMed  Google Scholar 

  37. Boggia J, Li Y, Thijs L, et al. Prognostic accuracy of day versus night ambulatory blood pressure: a cohort study. Lancet. 2007;370(9594):1219–29.

    Article  PubMed  Google Scholar 

  38. Brotman DJ, Davidson MB, Boumitri M, Vidt DG. Impaired diurnal blood pressure variation and all-cause mortality. Am J Hypertens. 2008;21(1):92–7.

    Article  PubMed  Google Scholar 

  39. Hermida RC, Ayala DE, Fernandez JR, Mojon A. Sleep-time blood pressure: prognostic value and relevance as a therapeutic target for cardiovascular risk reduction. Chronobiol Int. 2013;30(1–2):68–86.

    Article  PubMed  Google Scholar 

  40. Ohkubo T, Hozawa A, Yamaguchi J, et al. Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure: the Ohasama study. J Hypertens. 2002;20(11):2183–9.

    Article  CAS  PubMed  Google Scholar 

  41. White WB. The riskiest time for the brain: could the nighttime be the right time for intervention? Hypertension. 2007;49(6):1215–6.

    Article  CAS  PubMed  Google Scholar 

  42. Staessen JA, Thijs L, Fagard R, et al. Predicting cardiovascular risk using conventional vs ambulatory blood pressure in older patients with systolic hypertension. Systolic Hypertension in Europe Trial Investigators. JAMA. 1999;282(6):539–46.

    Article  CAS  PubMed  Google Scholar 

  43. Celis H, Staessen JA, Thijs L, et al. Cardiovascular risk in white-coat and sustained hypertensive patients. Blood Press. 2002;11(6):352–6.

    Article  PubMed  Google Scholar 

  44. Clement DL, De Buyzere ML, De Bacquer DA, et al. Prognostic value of ambulatory blood-pressure recordings in patients with treated hypertension. N Engl J Med. 2003;348(24):2407–15.

    Article  PubMed  Google Scholar 

  45. Fagard RH, Van Den Broeke C, De Cort P. Prognostic significance of blood pressure measured in the office, at home and during ambulatory monitoring in older patients in general practice. J Hum Hypertens. 2005;19(10):801–7.

    Article  CAS  PubMed  Google Scholar 

  46. Dolan E, Stanton A, Thijs L, et al. Superiority of ambulatory over clinic blood pressure measurement in predicting mortality: the Dublin outcome study. Hypertension. 2005;46(1):156–61.

    Article  CAS  PubMed  Google Scholar 

  47. Schwartz GL, Bailey KR, Mosley T, et al. Association of ambulatory blood pressure with ischemic brain injury. Hypertension. 2007;49(6):1228–34.

    Article  CAS  PubMed  Google Scholar 

  48. Kario K. Proposal of RAS-diuretic vs. RAS-calcium antagonist strategies in high-risk hypertension: insight from the 24-hour ambulatory blood pressure profile and central pressure. J Am Soc Hypertens. 2010;4(5):215–8.

    Article  CAS  PubMed  Google Scholar 

  49. Kario K, White WB. Early morning hypertension: what does it contribute to overall cardiovascular risk assessment? J Am Soc Hypertens. 2008;2(6):397–402.

    Article  PubMed  Google Scholar 

  50. Wolf J, Hering D, Narkiewicz K. Non-dipping pattern of hypertension and obstructive sleep apnea syndrome. Hypertens Res. 2010;33(9):867–71.

    Article  PubMed  Google Scholar 

  51. Martinez-Garcia MA, Capote F, Campos-Rodriguez F, et al. Effect of CPAP on blood pressure in patients with obstructive sleep apnea and resistant hypertension: the HIPARCO randomized clinical trial. JAMA. 2013;310(22):2407–15.

    Article  CAS  PubMed  Google Scholar 

  52. Eguchi K, Hoshide S, Ishikawa S, Shimada K, Kario K. Short sleep duration is an independent predictor of stroke events in elderly hypertensive patients. J Am Soc Hypertens. 2010;4(5):255–62.

    Article  PubMed  Google Scholar 

  53. Kario K, Pickering TG, Matsuo T, Hoshide S, Schwartz JE, Shimada K. Stroke prognosis and abnormal nocturnal blood pressure falls in older hypertensives. Hypertension. 2001;38(4):852–7.

    Article  CAS  PubMed  Google Scholar 

  54. Kario K, Pickering TG, Hoshide S, et al. Morning blood pressure surge and hypertensive cerebrovascular disease: role of the alpha adrenergic sympathetic nervous system. Am J Hypertens. 2004;17(8):668–75.

    Article  CAS  PubMed  Google Scholar 

  55. Kario K, Ishikawa J, Pickering TG, et al. Morning hypertension: the strongest independent risk factor for stroke in elderly hypertensive patients. Hypertens Res. 2006;29(8):581–7.

    Article  PubMed  Google Scholar 

  56. Ishikawa J, Tamura Y, Hoshide S, et al. Low-grade inflammation is a risk factor for clinical stroke events in addition to silent cerebral infarcts in Japanese older hypertensives: the Jichi Medical School ABPM Study, wave 1. Stroke. 2007;38(3):911–7.

    Article  PubMed  Google Scholar 

  57. Kernan WN, Ovbiagele B, Black HR, et al. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45(7):2160–236.

    Article  PubMed  Google Scholar 

  58. Klarenbeek P, van Oostenbrugge RJ, Rouhl RP, Knottnerus IL, Staals J. Ambulatory blood pressure in patients with lacunar stroke: association with total MRI burden of cerebral small vessel disease. Stroke. 2013;44(11):2995–9.

    Article  PubMed  Google Scholar 

  59. Nakamura K, Oita J, Yamaguchi T. Nocturnal blood pressure dip in stroke survivors. A pilot study. Stroke. 1995;26(8):1373–8.

    Article  CAS  PubMed  Google Scholar 

  60. Aznaouridis K, Vlachopoulos C, Protogerou A, Stefanadis C. Ambulatory systolic-diastolic pressure regression index as a predictor of clinical events: a meta-analysis of longitudinal studies. Stroke. 2012;43(3):733–9.

    Article  PubMed  Google Scholar 

  61. de Champlain J, Karas M, Toal C, Nadeau R, Larochelle P. Effects of antihypertensive therapies on the sympathetic nervous system. Can J Cardiol. 1999;15:8–14.

    Google Scholar 

  62. O’Brien E, Parati G, Stergiou G, et al. European Society of Hypertension position paper on ambulatory blood pressure monitoring. J Hypertens. 2013;31(9):1731–68.

    PubMed  Google Scholar 

  63. White WB. Ambulatory blood-pressure monitoring in clinical practice. N Engl J Med. 2003;348(24):2377–8.

    Article  PubMed  Google Scholar 

  64. Omboni S, Gazzola T, Carabelli G, Parati G. Clinical usefulness and cost effectiveness of home blood pressure telemonitoring: meta-analysis of randomized controlled studies. J Hypertens. 2013;31(3):455–67. discussion 467-458.

    Article  CAS  PubMed  Google Scholar 

  65. O’Brien E, Parati G, Stergiou G. Ambulatory blood pressure measurement: what is the international consensus? Hypertension. 2013;62(6):988–94.

    Article  PubMed  Google Scholar 

  66. Krakoff LR. Cost-effectiveness of ambulatory blood pressure: a reanalysis. Hypertension. 2006;47(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  67. Tamaki Y, Ohkubo T, Kobayashi M, et al. Cost effectiveness of hypertension treatment based on the measurement of ambulatory blood pressure. Yakugaku Zasshi. 2010;130(6):805–20.

    Article  CAS  PubMed  Google Scholar 

  68. Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31(7):1281–357.

    Article  CAS  PubMed  Google Scholar 

  69. O’Brien E, Asmar R, Beilin L, et al. Practice guidelines of the European Society of Hypertension for clinic, ambulatory and self blood pressure measurement. J Hypertens. 2005;23(4):697–701.

    Article  PubMed  Google Scholar 

  70. Pickering T. Recommendations for the use of home (self) and ambulatory blood pressure monitoring. American Society of Hypertension Ad Hoc Panel. Am J Hypertens. 1996;9(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  71. Pickering TG, Hall JE, Appel LJ, et al. Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation. 2005;111(5):697–716.

    Article  PubMed  Google Scholar 

  72. Williams B, Poulter NR, Brown MJ, et al. Guidelines for management of hypertension: report of the fourth working party of the British Hypertension Society, 2004-BHS IV. J Hum Hypertens. 2004;18(3):139–85.

    Article  CAS  PubMed  Google Scholar 

  73. Krause T, Lovibond K, Caulfield M, McCormack T, Williams B, Guideline DG. Management of hypertension: summary of NICE guidance. BMJ. 2011;343:d4891.

    Article  PubMed  Google Scholar 

  74. Meschia JF, Bushnell C, Boden-Albala B, et al. Guidelines for the primary prevention of stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45(12):3754–832.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Turnbull F. Blood Pressure Lowering Treatment Trialists C. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet. 2003;362(9395):1527–35.

    Article  CAS  PubMed  Google Scholar 

  76. Verdecchia P, Reboldi G, Angeli F, et al. Angiotensin-converting enzyme inhibitors and calcium channel blockers for coronary heart disease and stroke prevention. Hypertension. 2005;46(2):386–92.

    Article  CAS  PubMed  Google Scholar 

  77. Lindholm LH, Carlberg B, Samuelsson O. Should beta blockers remain first choice in the treatment of primary hypertension? A meta-analysis. Lancet. 2005;366(9496):1545–53.

    Article  CAS  PubMed  Google Scholar 

  78. Dahlof B, Sever PS, Poulter NR, et al. Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): a multicentre randomised controlled trial. Lancet. 2005;366(9489):895–906.

    Article  PubMed  Google Scholar 

  79. Poulter NR, Wedel H, Dahlof B, et al. Role of blood pressure and other variables in the differential cardiovascular event rates noted in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA). Lancet. 2005;366(9489):907–13.

    Article  CAS  PubMed  Google Scholar 

  80. Medical Research Council trial of treatment of hypertension in older adults: principal results. MRC Working Party. BMJ. 1992;304(6824):405–12.

    Google Scholar 

  81. Webb AJ, Wilson M, Lovett N, Paul N, Fischer U, Rothwell PM. Response of day-to-day home blood pressure variability by antihypertensive drug class after transient ischemic attack or nondisabling stroke. Stroke. 2014;45(10):2967–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad U. Farooq M.D., F.A.C.P., F.A.H.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Farooq, M.U., Min, J., Wong, L.K.S., Gorelick, P.B. (2016). Blood Pressure Variability, Antihypertensive Therapy and Stroke Risk. In: Aiyagari, V., Gorelick, P. (eds) Hypertension and Stroke. Clinical Hypertension and Vascular Diseases. Humana Press, Cham. https://doi.org/10.1007/978-3-319-29152-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29152-9_13

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-29150-5

  • Online ISBN: 978-3-319-29152-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics