Skip to main content

Advances in Umbilical Cord Blood Therapy: Hematopoietic Stem Cell Transplantation and Beyond

  • Chapter
  • First Online:
Advances in Stem Cell Therapy

Abstract

Hematopoietic stem cells (HSCs) have been used for bone marrow transplantations for over four decades. Traditionally, HSCs for bone marrow transplants are retrieved from bone marrow aspirates, but other sources such as peripheral blood and umbilical cord blood (CB) are now being used. Notably, CB has become the leading source of HSCs for many transplant centers due to its rich source of HSCs and ease of collection, storage, and shipment. Also, the development of HSC expansion methods and the use of double-cord transplantations have expanded the use of CB beyond just small children. Moreover, existing banks of CB can provide immediate matched allogeneic and autologous sources of HSCs for transplantation. In addition to hematological diseases, CB is being applied to the field of regenerative medicine and is currently being tested in clinical trials predominantly in the field of neurological disorders, including cerebral palsy, autism, hypoxic-ischemic encephalopathy, stroke, and hearing loss. While still early, published results from clinical trials using allogeneic CB suggest a benefit to children with cerebral palsy. Results from clinical trials using autologous CB for children with cerebral palsy are anticipated in 2016. A benefit of autologous CB has been reported for infants suffering from hypoxic-ischemic encephalopathy. Other ongoing clinical trials are not expected to be completed until 2016 and beyond. Complementary to the application of CB to regenerative medicine is the production of induced pluripotent stem cells (iPSCs) from CB. CB is an attractive source of young cells for iPSC generation, and the production of umbilical cord-blood-derived iPSCs renders the prospective applications of umbilical cord blood endless.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Becker AJ, Mc CE, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature. 1963;197:452–4.

    Article  CAS  PubMed  Google Scholar 

  2. Broxmeyer HE, et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci U S A. 1989;86:3828–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gluckman E, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med. 1989;321:1174–8. doi:10.1056/NEJM198910263211707.

    Article  CAS  PubMed  Google Scholar 

  4. Ballen KK, Verter F, Kurtzberg J. Umbilical cord blood donation: public or private? Bone Marrow Transplant. 2015;50(10):1271–8. doi:10.1038/bmt.2015.124.

    Article  CAS  PubMed  Google Scholar 

  5. Parent’s Guide to Cord Blood Foundation. 2015. http://www.parentsguidecordblood.org/.

  6. Petrini C. Umbilical cord blood banking: from personal donation to international public registries to global bioeconomy. J Blood Med. 2014;5:87–97. doi:10.2147/JBM.S64090.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Webb S. Banking on cord blood stem cells. Nat Biotechnol. 2013;31:585–8. doi:10.1038/nbt.2629.

    Article  CAS  PubMed  Google Scholar 

  8. O’Connor MA, Samuel G, Jordens CF, Kerridge IH. Umbilical cord blood banking: beyond the public-private divide. J Law Med. 2012;19:512–6.

    PubMed  Google Scholar 

  9. Eapen M, et al. Outcomes of transplantation of unrelated donor umbilical cord blood and bone marrow in children with acute leukaemia: a comparison study. Lancet. 2007;369:1947–54. doi:10.1016/S0140-6736(07)60915-5.

    Article  PubMed  Google Scholar 

  10. Barker JN, et al. Availability of cord blood extends allogeneic hematopoietic stem cell transplant access to racial and ethnic minorities. Biol Blood Marrow Transplant. 2010;16:1541–8. doi:10.1016/j.bbmt.2010.08.011.

    Article  PubMed  PubMed Central  Google Scholar 

  11. National Cord Blood Program of the New York Blood Center. 2014. http://www.nationalcordbloodprogram.org/Transplant_locations.gif.

  12. Gragert L, et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med. 2014;371:339–48. doi:10.1056/NEJMsa1311707.

    Article  CAS  PubMed  Google Scholar 

  13. Ballen KK, et al. Collection and preservation of cord blood for personal use. Biol Blood Marrow Transplant. 2008;14:356–63. doi:10.1016/j.bbmt.2007.11.005.

    Article  PubMed  Google Scholar 

  14. Johnson FL. Placental blood transplantation and autologous banking—caveat emptor. J Pediatr Hematol Oncol. 1997;19:183–6.

    Article  CAS  PubMed  Google Scholar 

  15. Nietfeld JJ, Pasquini MC, Logan BR, Verter F, Horowitz MM. On the probability of using cord blood. Biol Blood Marrow Transplant. 2008;14:724–5. doi:10.1016/j.bbmt.2008.03.004.

    Article  CAS  PubMed  Google Scholar 

  16. Song EY, et al. Estimation of size of cord blood inventory based on high-resolution typing of HLAs. Bone Marrow Transplant. 2014;49:977–9. doi:10.1038/bmt.2014.76.

    Article  CAS  PubMed  Google Scholar 

  17. Martino R, et al. Severe infections after single umbilical cord blood transplantation in adults with or without the co-infusion of CD34+ cells from a third-party donor: results of a multicenter study from the Grupo Espanol de Trasplante Hematopoyetico (GETH). Transpl Infect Dis. 2015;17:221–33. doi:10.1111/tid.12361.

    Article  CAS  PubMed  Google Scholar 

  18. Rogers I, et al. Human UC-blood banking: impact of blood volume, cell separation and cryopreservation on leukocyte and CD34(+) cell recovery. Cytotherapy. 2001;3:269–76.

    Article  CAS  PubMed  Google Scholar 

  19. Rocha V, et al. Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. N Engl J Med. 2000;342:1846–54. doi:10.1056/NEJM200006223422501.

    Article  CAS  PubMed  Google Scholar 

  20. Eapen M, et al. Effect of graft source on unrelated donor haemopoietic stem-cell transplantation in adults with acute leukaemia: a retrospective analysis. Lancet Oncol. 2010;11:653–60. doi:10.1016/S1470-2045(10)70127-3.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Saliba RM, et al. General and virus-specific immune cell reconstitution after double cord blood transplantation. Biol Blood Marrow Transplant. 2015;21:1284–90. doi:10.1016/j.bbmt.2015.02.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wagner JE, et al. Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood. 2002;100:1611–8. doi:10.1182/blood-2002-01-0294.

    CAS  PubMed  Google Scholar 

  23. Ponce DM, et al. High disease-free survival with enhanced protection against relapse after double-unit cord blood transplantation when compared with T cell-depleted unrelated donor transplantation in patients with acute Leukemia and chronic myelogenous Leukemia. Biol Blood Marrow Transplant. 2015;21(11):1985–93. doi:10.1016/j.bbmt.2015.07.029.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Milano F, et al. Correlation of infused CD3+ CD8+ cells with single-donor dominance after double-unit cord blood transplantation. Biol Blood Marrow Transplant. 2013;19:156–60. doi:10.1016/j.bbmt.2012.09.004.

    Article  CAS  PubMed  Google Scholar 

  25. Gutman JA, et al. Single-unit dominance after double-unit umbilical cord blood transplantation coincides with a specific CD8+ T-cell response against the nonengrafted unit. Blood. 2010;115:757–65. doi:10.1182/blood-2009-07-228999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Scaradavou A, et al. Double unit grafts successfully extend the application of umbilical cord blood transplantation in adults with acute leukemia. Blood. 2013;121:752–8. doi:10.1182/blood-2012-08-449108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ramirez P, et al. Factors predicting single-unit predominance after double umbilical cord blood transplantation. Bone Marrow Transplant. 2012;47:799–803. doi:10.1038/bmt.2011.184.

    Article  CAS  PubMed  Google Scholar 

  28. Majhail NS, Brunstein CG, Wagner JE. Double umbilical cord blood transplantation. Curr Opin Immunol. 2006;18:571–5. doi:10.1016/j.coi.2006.07.015.

    Article  CAS  PubMed  Google Scholar 

  29. McNiece IK, Almeida-Porada G, Shpall EJ, Zanjani E. Ex vivo expanded cord blood cells provide rapid engraftment in fetal sheep but lack long-term engrafting potential. Exp Hematol. 2002;30:612–6.

    Article  PubMed  Google Scholar 

  30. Madlambayan G, Rogers I. Umbilical cord-derived stem cells for tissue therapy: current and future uses. Regen Med. 2006;1:777–87.

    Article  CAS  PubMed  Google Scholar 

  31. Rogers IM, Yamanaka N, Casper RF. A simplified procedure for hematopoietic stem cell amplification using a serum-free, feeder cell-free culture system. Biol Blood Marrow Transplant. 2008;14:927–37. doi:10.1016/j.bbmt.2008.06.002.

    Article  CAS  PubMed  Google Scholar 

  32. Shpall EJ, et al. Transplantation of ex vivo expanded cord blood. Biol Blood Marrow Transplant. 2002;8:368–76.

    Article  PubMed  Google Scholar 

  33. Delaney C, et al. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med. 2010;16:232–6. doi:10.1038/nm.2080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. de Lima M, et al. Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N Engl J Med. 2012;367:2305–15. doi:10.1056/NEJMoa1207285.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Szabo E, et al. Direct conversion of human fibroblasts to multilineage blood progenitors. Nature. 2010;468:521–6. doi:10.1038/nature09591.

    Article  CAS  PubMed  Google Scholar 

  36. Nichols J, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95:379–91.

    Article  CAS  PubMed  Google Scholar 

  37. Madlambayan GJ, et al. Clinically relevant expansion of hematopoietic stem cells with conserved function in a single-use, closed-system bioprocess. Biol Blood Marrow Transplant. 2006;12:1020–30.

    Article  PubMed  Google Scholar 

  38. Huang X, et al. Activation of OCT4 enhances ex vivo expansion of human cord blood hematopoietic stem and progenitor cells by regulating HOXB4 expression. Leukemia. 2015;30(1):144–53. doi:10.1038/leu.2015.189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Krosl J, et al. In vitro expansion of hematopoietic stem cells by recombinant TAT-HOXB4 protein. Nat Med. 2003;9:1428–32. doi:10.1038/nm951.

    Article  CAS  PubMed  Google Scholar 

  40. Fares I, et al. Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science. 2014;345:1509–12. doi:10.1126/science.1256337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. de Lima M, et al. Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial. Bone Marrow Transplant. 2008;41:771–8. doi:10.1038/sj.bmt.1705979.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Robinson SN, et al. Mesenchymal stem cells in ex vivo cord blood expansion. Best Pract Res Clin Haematol. 2011;24:83–92. doi:10.1016/j.beha.2010.11.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. https://clinicaltrials.gov/ct2/results?term=umbilical+cord+blood+expansion&Search=Search.

  44. Jain N, et al. Immune reconstitution after combined haploidentical and umbilical cord blood transplant. Leuk Lymphoma. 2013;54:1242–9. doi:10.3109/10428194.2012.739688.

    Article  CAS  PubMed  Google Scholar 

  45. Taskinen MH, Huttunen P, Niittyvuopio R, Saarinen-Pihkala UM. Coinfusion of mobilized hematopoietic stem cells from an HLA-mismatched third-party donor with umbilical cord blood graft to support engraftment. J Pediatr Hematol Oncol. 2014;36:e518–23. doi:10.1097/MPH.0000000000000222.

    Article  PubMed  Google Scholar 

  46. Liu H, et al. Reduced-intensity conditioning with combined haploidentical and cord blood transplantation results in rapid engraftment, low GVHD, and durable remissions. Blood. 2011;118:6438–45. doi:10.1182/blood-2011-08-372508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Berglund S, Gertow J, Uhlin M, Mattsson J. Expanded umbilical cord blood T cells used as donor lymphocyte infusions after umbilical cord blood transplantation. Cytotherapy. 2014;16:1528–36. doi:10.1016/j.jcyt.2014.08.001.

    Article  CAS  PubMed  Google Scholar 

  48. Hidalgo A, Weiss LA, Frenette PS. Functional selectin ligands mediating human CD34(+) cell interactions with bone marrow endothelium are enhanced postnatally. J Clin Invest. 2002;110:559–69. doi:10.1172/JCI14047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xia L, McDaniel JM, Yago T, Doeden A, McEver RP. Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow. Blood. 2004;104:3091–6. doi:10.1182/blood-2004-02-0650.

    Article  CAS  PubMed  Google Scholar 

  50. Popat U, et al. Enforced fucosylation of cord blood hematopoietic cells accelerates neutrophil and platelet engraftment after transplantation. Blood. 2015;125:2885–92. doi:10.1182/blood-2015-01-607366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Coletti HY, et al. Long-term functional outcomes of children with hurler syndrome treated with unrelated umbilical cord blood transplantation. JIMD Reports. 2015;20:77–86. doi:10.1007/8904_2014_395.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Staba SL, et al. Cord-blood transplants from unrelated donors in patients with Hurler’s syndrome. N Engl J Med. 2004;350:1960–9. doi:10.1056/NEJMoa032613.

    Article  CAS  PubMed  Google Scholar 

  53. Aldenhoven M, et al. Long-term outcome of Hurler syndrome patients after hematopoietic cell transplantation: an international multicenter study. Blood. 2015;125:2164–72. doi:10.1182/blood-2014-11-608075.

    Article  CAS  PubMed  Google Scholar 

  54. Prasad VK, Kurtzberg J. Umbilical cord blood transplantation for non-malignant diseases. Bone Marrow Transplant. 2009;44:643–51. doi:10.1038/bmt.2009.290.

    Article  CAS  PubMed  Google Scholar 

  55. Kogler G, et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med. 2004;200:123–35. doi:10.1084/jem.20040440.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mareschi K, et al. Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica. 2001;86:1099–100.

    CAS  PubMed  Google Scholar 

  57. Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 2000;109:235–42.

    Article  CAS  PubMed  Google Scholar 

  58. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow. Stem Cells. 2006;24:1294–301.

    Article  CAS  PubMed  Google Scholar 

  59. Bieback K, Kern S, Kluter H, Eichler H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells. 2004;22:625–34.

    Article  PubMed  Google Scholar 

  60. Vanneaux V, et al. In vitro and in vivo analysis of endothelial progenitor cells from cryopreserved umbilical cord blood: are we ready for clinical application? Cell Transplant. 2010;19:1143–55. doi:10.3727/096368910X504487.

    Article  PubMed  Google Scholar 

  61. Barclay GR, et al. Systematic assessment in an animal model of the angiogenic potential of different human cell sources for therapeutic revascularization. Stem Cell Res Ther. 2012;3:23. doi:10.1186/scrt114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wong CJ, Casper RF, Rogers IM. Epigenetic changes to human umbilical cord blood cells cultured with three proteins indicate partial reprogramming to a pluripotent state. Exp Cell Res. 2010;316:927–39. doi:10.1016/j.yexcr.2010.01.018.

    Article  CAS  PubMed  Google Scholar 

  63. Rogers I, et al. Identification and analysis of in vitro cultured CD45-positive cells capable of multi-lineage differentiation. Exp Cell Res. 2007;313:1839–52. doi:10.1016/j.yexcr.2007.02.029.

    Article  CAS  PubMed  Google Scholar 

  64. Whiteley J, et al. An expanded population of CD34+ cells from frozen banked umbilical cord blood demonstrate tissue repair mechanisms of mesenchymal stromal cells and circulating angiogenic cells in an ischemic hind limb model. Stem Cell Rev. 2014;10:338–50. doi:10.1007/s12015-014-9496-1.

    Article  CAS  PubMed  Google Scholar 

  65. Meier C, et al. Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Pediatr Res. 2006;59:244–9. doi:10.1203/01.pdr.0000197309.08852.f5.

    Article  PubMed  Google Scholar 

  66. Pimentel VC, Pinheiro FV, Kaefer M, Moresco RN, Moretto MB. Assessment of uric acid and lipid peroxidation in serum and urine after hypoxia-ischemia neonatal in rats. Neurol Sci. 2011;32:59–65. doi:10.1007/s10072-010-0393-3.

    Article  CAS  PubMed  Google Scholar 

  67. Drobyshevsky A, et al. Human umbilical cord blood cells ameliorate motor deficits in rabbits in a cerebral palsy model. Dev Neurosci. 2015;37:349–62. doi:10.1159/000374107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Acosta SA, et al. Combination therapy of human umbilical cord blood cells and granulocyte colony stimulating factor reduces histopathological and motor impairments in an experimental model of chronic traumatic brain injury. PLoS One. 2014;9, e90953. doi:10.1371/journal.pone.0090953.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Ryabov SI, et al. Efficiency of transplantation of human placental/umbilical blood cells to rats with severe spinal cord injury. Bull Exp Biol Med. 2014;157:85–8. doi:10.1007/s10517-014-2498-9.

    Article  CAS  PubMed  Google Scholar 

  70. Chua SJ, et al. The effect of umbilical cord blood cells on outcomes after experimental traumatic spinal cord injury. Spine (Phila Pa 1976). 2010;35:1520–6. doi:10.1097/BRS.0b013e3181c3e963.

    Article  Google Scholar 

  71. Hirtz D, et al. How common are the “common” neurologic disorders? Neurology. 2007;68:326–37. doi:10.1212/01.wnl.0000252807.38124.a3.

    Article  CAS  PubMed  Google Scholar 

  72. Kang M, et al. Involvement of immune responses in the efficacy of cord blood cell therapy for cerebral palsy. Stem Cells Dev. 2015;24(19):2259–68. doi:10.1089/scd.2015.0074.

    Article  CAS  PubMed  Google Scholar 

  73. Min K, et al. Umbilical cord blood therapy potentiated with erythropoietin for children with cerebral palsy: a double-blind, randomized, placebo-controlled trial. Stem Cells. 2013;31:581–91. doi:10.1002/stem.1304.

    Article  CAS  PubMed  Google Scholar 

  74. Osman MM, et al. Cyclosporine-A as a neuroprotective agent against stroke: its translation from laboratory research to clinical application. Neuropeptides. 2011;45:359–68. doi:10.1016/j.npep.2011.04.002.

    Article  CAS  PubMed  Google Scholar 

  75. Cox C. NCT01988584, safety and effectiveness of banked cord blood or bone morrow stem cells in children with cerebral palsy (CP). http://clinicaltrials.gov (2016).

  76. Carroll JE. NCT01072370, safety and effectiveness of cord blood stem cell infusion for the treatment of cerebral palsy in children. http://www.clinicaltrials.gov (2016).

  77. Kurtzberg J. NCT01147653, a randomized study of autologous umbilical cord blood reinfusion in children with cerebral palsy. http://www.clinicaltrials.gov (2016).

  78. Englander ZA, et al. Brain structural connectivity increases concurrent with functional improvement: evidence from diffusion tensor MRI in children with cerebral palsy during therapy. Neuroimage Clin. 2015;7:315–24. doi:10.1016/j.nicl.2015.01.002.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cotten CM, et al. Feasibility of autologous cord blood cells for infants with hypoxic-ischemic encephalopathy. J Pediatr. 2014;164:973–9.e971. doi:10.1016/j.jpeds.2013.11.036.

    Article  PubMed  Google Scholar 

  80. Lin S-Z. NCT02433509, Phase I clinical safety study about human umbilical cord blood monocyte in the acute ischemic stroke. http://www.clinicaltrials.gov (2016); Poon WS, Ka Kit Leung G. NCT01673932, safety and feasibility study of umbilical cord blood mononuclear cells transplant to treat ischemic stroke. http://www.clinicaltrials.gov (2016); Green J. NCT02460484, safety of autologous human umbilical cord blood treatment for perinatal arterial ischemic stroke. http://www.clinicaltrials.gov (2016); Kurtzberg J. NCT02176317, autologous umbilical cord blood infusion for children with autism spectrum disorder (ASD). http://www.clinicaltrials.gov (2016); Chez M. NCT01638819, autologous cord blood stem cells for autism. http://www.clinicaltrials.gov (2016); Baumgartner J, Baumgartner L. NCT02038972, safety of autologous stem cell infusion for children with acquired hearing loss. http://www.clinicaltrials.gov (2016); Nelson TJ, Qureshi MY, Burkhart HM. NCT01883076, safety study of autologous umbilical cord blood cells for treatment of hypoplastic left heart syndrome. http://www.clinicaltrials.gov (2016).

  81. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76. doi:10.1016/j.cell.2006.07.024.

    Article  CAS  PubMed  Google Scholar 

  82. Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72. doi:10.1016/j.cell.2007.11.019.

    Article  CAS  PubMed  Google Scholar 

  83. Hussein SM, et al. Genome-wide characterization of the routes to pluripotency. Nature. 2014;516:198–206. doi:10.1038/nature14046.

    Article  CAS  PubMed  Google Scholar 

  84. Broxmeyer HE, et al. Hematopoietic stem/progenitor cells, generation of induced pluripotent stem cells, and isolation of endothelial progenitors from 21- to 23.5-year cryopreserved cord blood. Blood. 2011;117:4773–7. doi:10.1182/blood-2011-01-330514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Eminli S, et al. Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet. 2009;41:968–76. doi:10.1038/ng.428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhou H, Rao MS. Can cord blood banks transform into induced pluripotent stem cell banks? Cytotherapy. 2015;17:756–64. doi:10.1016/j.jcyt.2015.02.008.

    Article  PubMed  Google Scholar 

  87. Yu J, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20. doi:10.1126/science.1151526.

    Article  CAS  PubMed  Google Scholar 

  88. Blelloch R, Venere M, Yen J, Ramalho-Santos M. Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell. 2007;1:245–7. doi:10.1016/j.stem.2007.08.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Woltjen K, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 2009;458:766–70. doi:10.1038/nature07863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kaji K, et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature. 2009;458:771–5. doi:10.1038/nature07864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85:348–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Seki T, et al. Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell. 2010;7:11–4. doi:10.1016/j.stem.2010.06.003.

    Article  CAS  PubMed  Google Scholar 

  93. Ye L, et al. Blood cell-derived induced pluripotent stem cells free of reprogramming factors generated by Sendai viral vectors. Stem Cells Transl Med. 2013;2:558–66. doi:10.5966/sctm.2013-0006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ban H, et al. Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci U S A. 2011;108:14234–9. doi:10.1073/pnas.1103509108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yu J, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science. 2009;324:797–801. doi:10.1126/science.1172482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Okita K, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8:409–12. doi:10.1038/nmeth.1591.

    Article  CAS  PubMed  Google Scholar 

  97. Okita K, et al. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells. 2013;31:458–66. doi:10.1002/stem.1293.

    Article  CAS  PubMed  Google Scholar 

  98. Warren L, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7:618–30. doi:10.1016/j.stem.2010.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhou H, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. 2009;4:381–4. doi:10.1016/j.stem.2009.04.005.

    Article  CAS  PubMed  Google Scholar 

  100. Kim D, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 2009;4:472–6. doi:10.1016/j.stem.2009.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Park IH, et al. Disease-specific induced pluripotent stem cells. Cell. 2008;134:877–86. doi:10.1016/j.cell.2008.07.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Doyle MJ, et al. Human induced pluripotent stem cell-derived cardiomyocytes as a model for heart development and congenital heart disease. Stem Cell Rev. 2015;11(5):710–27. doi:10.1007/s12015-015-9596-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Moretti A, et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med. 2010;363:1397–409. doi:10.1056/NEJMoa0908679.

    Article  CAS  PubMed  Google Scholar 

  104. Itzhaki I, et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature. 2011;471:225–9. doi:10.1038/nature09747.

    Article  CAS  PubMed  Google Scholar 

  105. Egashira T, et al. Disease characterization using LQTS-specific induced pluripotent stem cells. Cardiovasc Res. 2012;95:419–29. doi:10.1093/cvr/cvs206.

    Article  CAS  PubMed  Google Scholar 

  106. Terrenoire C, et al. Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics. J Gen Physiol. 2013;141:61–72. doi:10.1085/jgp.201210899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ma D, et al. Modeling type 3 long QT syndrome with cardiomyocytes derived from patient-specific induced pluripotent stem cells. Int J Cardiol. 2013;168:5277–86. doi:10.1016/j.ijcard.2013.08.015.

    Article  PubMed  Google Scholar 

  108. Han L, et al. Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovasc Res. 2014;104:258–69. doi:10.1093/cvr/cvu205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lan F, et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell. 2013;12:101–13. doi:10.1016/j.stem.2012.10.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen M, et al. Inactivation of Fac in mice produces inducible chromosomal instability and reduced fertility reminiscent of Fanconi anaemia. Nat Genet. 1996;12:448–51. doi:10.1038/ng0496-448.

    Article  CAS  PubMed  Google Scholar 

  111. Reeves RH, et al. A mouse model for Down syndrome exhibits learning and behaviour deficits. Nat Genet. 1995;11:177–84. doi:10.1038/ng1095-177.

    Article  CAS  PubMed  Google Scholar 

  112. Nelson DL, Gibbs RA. Genetics. The critical region in trisomy 21. Science. 2004;306:619–21. doi:10.1126/science.1105226.

    Article  CAS  PubMed  Google Scholar 

  113. Matsa E, et al. Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. Eur Heart J. 2011;32:952–62. doi:10.1093/eurheartj/ehr073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Freed CR, et al. Transplantation of human fetal dopamine cells for Parkinson’s disease. Results at 1 year. Arch Neurol. 1990;47:505–12.

    Article  CAS  PubMed  Google Scholar 

  115. Freed CR, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med. 2001;344:710–9. doi:10.1056/NEJM200103083441002.

    Article  CAS  PubMed  Google Scholar 

  116. Lindvall O, et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science. 1990;247:574–7.

    Article  CAS  PubMed  Google Scholar 

  117. Kriks S, et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature. 2011;480:547–51. doi:10.1038/nature10648.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Cai J, et al. Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats. Stem Cells Dev. 2010;19:1017–23. doi:10.1089/scd.2009.0319.

    Article  CAS  PubMed  Google Scholar 

  119. Swistowski A, et al. Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells. 2010;28:1893–904. doi:10.1002/stem.499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rhee YH, et al. Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease. J Clin Invest. 2011;121:2326–35. doi:10.1172/JCI45794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lumelsky N, et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science. 2001;292:1389–94. doi:10.1126/science.1058866.

    Article  CAS  PubMed  Google Scholar 

  122. Kroon E, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26:443–52. doi:10.1038/nbt1393.

    Article  CAS  PubMed  Google Scholar 

  123. Rezania A, et al. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes. 2012;61:2016–29. doi:10.2337/db11-1711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rezania A, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 2014;32:1121–33. doi:10.1038/nbt.3033.

    Article  CAS  PubMed  Google Scholar 

  125. Pagliuca FW, et al. Generation of functional human pancreatic beta cells in vitro. Cell. 2014;159:428–39. doi:10.1016/j.cell.2014.09.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang D, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res. 2009;19:429–38. doi:10.1038/cr.2009.28.

    Article  CAS  PubMed  Google Scholar 

  127. Jiang W, et al. In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res. 2007;17:333–44. doi:10.1038/cr.2007.28.

    Article  CAS  PubMed  Google Scholar 

  128. Shim JH, et al. Directed differentiation of human embryonic stem cells towards a pancreatic cell fate. Diabetologia. 2007;50:1228–38. doi:10.1007/s00125-007-0634-z.

    Article  CAS  PubMed  Google Scholar 

  129. D’Amour KA, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24:1392–401. doi:10.1038/nbt1259.

    Article  PubMed  CAS  Google Scholar 

  130. Nostro MC, et al. Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines. Stem Cell Reports. 2015;4:591–604. doi:10.1016/j.stemcr.2015.02.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian M. Rogers Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chow, T., Mueller, S., Rogers, I.M. (2017). Advances in Umbilical Cord Blood Therapy: Hematopoietic Stem Cell Transplantation and Beyond. In: El-Badri, N. (eds) Advances in Stem Cell Therapy. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-29149-9_8

Download citation

Publish with us

Policies and ethics