Skip to main content

Clinical Applications of Stem Cells in Women’s Reproductive Health

  • Chapter
  • First Online:
Advances in Stem Cell Therapy

Abstract

Women’s reproductive health is a broad field that actively interacts with the ongoing stem cell research. One objective of this chapter is to overview the role of tissue specific adult stem cells in the pathogenesis of key disorders affecting women, especially those with a proliferative course such as leiomyoma and endometriosis. Stem cells isolated from these pathologies are used as disease models to investigate their pathogenesis. Similarly, the etiology of obstetric disorders such as preeclampsia, placental insufficiency and trophoblastic diseases were attributed to defective function of the trophoblast stem cells. Common women-specific cancers have been also characterized based on their cancer stem cell population, and several clinical trials are underway to target these cells using novel approaches such as the immune and anti-angiogenic therapies. The second objective of this chapter is to discuss some of the recent applications of the stem cell based therapies in treating women’s and maternal health problems.

Other than the debatable source of embryonic stem cells, the byproducts of delivery such as the umbilical cord blood serve as well-established sources of multipotent stem cells used in several applications, some of which have entered the stage of clinical practice. The use of intrauterine stem cell therapy in fetal medicine is a key approach that can solve hundreds of incurable and serious genetic disorders. Nevertheless, few clinical case reports were published, indicating the urgent need for well-designed clinical trials in this field. The use of autologous germline stem cells in the treatment of infertility, especially when caused by ovarian failure, is a new area of research that is of high promise. It necessitates more robust evidence before considering its application in humans due to its long-term implications for the patient and her offspring.

The original version of this chapter was revised: DOI 10.1007/978-3-319-29149-9_14

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-29149-9_14

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Day Baird D, Dunson DB, Hill MC, Cousins D, Schectman JM. High cumulative incidence of uterine leiomyoma in black and white women: Ultrasound evidence. Am J Obstet Gynecol. 2003;188:100–7. doi:10.1067/mob.2003.99.

    Article  Google Scholar 

  2. Zhang P, et al. Use of X-chromosome inactivation pattern to determine the clonal origins of uterine leiomyoma and leiomyosarcoma. Hum Pathol. 2006;37:1350–6.

    Article  CAS  PubMed  Google Scholar 

  3. Maruo T, Ohara N, Wang J, Matsuo H. Sex steroidal regulation of uterine leiomyoma growth and apoptosis. Hum Reprod Update. 2004;10:207–20.

    Article  CAS  PubMed  Google Scholar 

  4. Ono M, et al. Side population in human uterine myometrium displays phenotypic and functional characteristics of myometrial stem cells. Proc Natl Acad Sci U S A. 2007;104:18700–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ono M, et al. Paracrine activation of WNT/β-catenin pathway in uterine leiomyoma stem cells promotes tumor growth. Proc Natl Acad Sci. 2013;110:17053–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bulun SE. Uterine fibroids. N Engl J Med. 2013;369:1344–55. doi:10.1056/NEJMra1209993.

    Article  CAS  PubMed  Google Scholar 

  7. Moravek MB, et al. Ovarian steroids, stem cells and uterine leiomyoma: therapeutic implications. Hum Reprod Update. 2015;21:1–12.

    Article  PubMed  Google Scholar 

  8. Igenomix. Somatic stem cells in leiomyomas? 2012.

    Google Scholar 

  9. Wood AJ, Olive DL, Pritts EA. Treatment of endometriosis. N Engl J Med. 2001;345:266–75.

    Article  Google Scholar 

  10. Vinatier D, Orazi G, Cosson M, Dufour P. Theories of endometriosis. Eur J Obstet Gynecol Reprod Biol. 2001;96:21–34.

    Article  CAS  PubMed  Google Scholar 

  11. Zech N, Preisegger K-H, Hollands P. Stem cell therapeutics—reality versus hype and hope. J Assist Reprod Genet. 2011;28:287–90. doi:10.1007/s10815-010-9520-6.

    Article  PubMed  Google Scholar 

  12. Wu Y, et al. Resolution of clonal origins for endometriotic lesions using laser capture microdissection and the human androgen receptor (HUMARA) assay. Fertil Steril. 2003;79 Suppl 1:710–7.

    Article  PubMed  Google Scholar 

  13. Sasson IE, Taylor HS. Stem cells and the pathogenesis of endometriosis. Ann N Y Acad Sci. 2008;1127:106–15. doi:10.1196/annals.1434.014.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Götte M, et al. Increased expression of the adult stem cell marker Musashi-1 in endometriosis and endometrial carcinoma. J Pathol. 2008;215:317–29. doi:10.1002/path.2364.

    Article  PubMed  Google Scholar 

  15. Gargett CE, Masuda H, Weston GC. Stem cells in endometriosis. In: Endometriosis: science and practice. New York: Wiley-Blackwell; 2012. p. 130–9.

    Chapter  Google Scholar 

  16. Du H, Taylor HS. Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells. 2007;25:2082–6. doi:10.1634/stemcells.2006-0828.

    Article  CAS  PubMed  Google Scholar 

  17. Sibai B, Dekker G, Kupferminc M. Pre-eclampsia. Lancet. 2005;365:785–99.

    Article  PubMed  Google Scholar 

  18. Granger JP, Alexander BT, Llinas MT, Bennett WA, Khalil RA. Pathophysiology of preeclampsia: linking placental ischemia/hypoxia with microvascular dysfunction. Microcirculation. 2002;9:147–60.

    Article  CAS  PubMed  Google Scholar 

  19. Douglas GC, VandeVoort CA, Kumar P, Chang TC, Golos TG. Trophoblast stem cells: models for investigating trophectoderm differentiation and placental development. Endocr Rev. 2009;30:228–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Joerger-Messerli M, et al. Preeclampsia enhances neuroglial marker expression in umbilical cord Wharton’s jelly-derived mesenchymal stem cells. J Matern Fetal Neonatal Med. 2015;28:464–9. doi:10.3109/14767058.2014.921671.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, et al. miR-16 inhibits the proliferation and angiogenesis-regulating potential of mesenchymal stem cells in severe pre-eclampsia. FEBS J. 2012;279:4510–24. doi:10.1111/febs.12037.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao G, et al. Differential expression of microRNAs in decidua-derived mesenchymal stem cells from patients with pre-eclampsia. J Biomed Sci. 2014;21:81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lim KH, et al. Human cytotrophoblast differentiation/invasion is abnormal in pre-eclampsia. Am J Pathol. 1997;151:1809–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kunath T, Strumpf D, Rossant J. Early trophoblast determination and stem cell maintenance in the mouse—a review. Placenta. 2004;25(Suppl A):S32–8. doi:10.1016/j.placenta.2004.01.015.

    Article  PubMed  Google Scholar 

  25. Stephens AJ, Karvas RM, Adachi K, Schulz LC, Schust DJ. Modeling preeclampsia: an emerging role for stem cells. NeoReviews. 2014;15:e526–36.

    Article  Google Scholar 

  26. Prather WR, et al. The role of placental-derived adherent stromal cell (PLX-PAD) in the treatment of critical limb ischemia. Cytotherapy. 2009;11:427–34.

    Article  CAS  PubMed  Google Scholar 

  27. Hahn S. Preeclampsia–will orphan drug status facilitate innovative biological therapies? Front Surg. 2015;2:7.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci. 2003;100:3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rutella S, et al. Cells with characteristics of cancer stem/progenitor cells express the CD133 antigen in human endometrial tumors. Clin Cancer Res. 2009;15:4299–311. doi:10.1158/1078-0432.ccr-08-1883.

    Article  CAS  PubMed  Google Scholar 

  30. Bapat SA, Mali AM, Koppikar CB, Kurrey NK. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res. 2005;65:3025–9. doi:10.1158/0008-5472.can-04-3931.

    CAS  PubMed  Google Scholar 

  31. Paik DY, et al. Stem-like epithelial cells are concentrated in the distal end of the fallopian tube: a site for injury and serous cancer initiation. Stem Cells. 2012;30:2487–97. doi:10.1002/stem.1207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scurry J, Brand A, Planner R, Dowling J, Rode J. Vulvar Merkel cell tumor with glandular and squamous differentiation. Gynecol Oncol. 1996;62:292–7. doi:10.1006/gyno.1996.0229.

    Article  CAS  PubMed  Google Scholar 

  33. Siu MKY, et al. Overexpression of NANOG in gestational trophoblastic diseases: effect on apoptosis, cell invasion, and clinical outcome. Am J Pathol. 2008;173:1165–72. doi:10.2353/ajpath.2008.080288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. NCI. National Cancer Institute. 2015. http://www.cancer.gov/types.

  35. Steg AD, et al. Stem cell pathways contribute to clinical chemoresistance in ovarian cancer. Clin Cancer Res. 2012;18:869–81.

    Article  CAS  PubMed  Google Scholar 

  36. Ginestier C, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67. doi:10.1016/j.stem.2007.08.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Corti S, et al. Identification of a primitive brain–derived neural stem cell population based on aldehyde dehydrogenase activity. Stem Cells. 2006;24:975–85. doi:10.1634/stemcells.2005-0217.

    Article  CAS  PubMed  Google Scholar 

  38. Sjöström M, et al. Stem cell biomarker ALDH1A1 in breast cancer shows an association with prognosis and clinicopathological variables that is highly cut-off dependent. J Clin Pathol. 2015;68:1012–9.

    Article  PubMed  CAS  Google Scholar 

  39. Meng E, et al. ALDH1A1 maintains ovarian cancer stem cell-like properties by altered regulation of cell cycle checkpoint and DNA repair network signaling. PLoS One. 2014;9, e107142. doi:10.1371/journal.pone.0107142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Szotek PP, et al. Normal ovarian surface epithelial label-retaining cells exhibit stem/progenitor cell characteristics. Proc Natl Acad Sci. 2008;105:12469–73. doi:10.1073/pnas.0805012105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ng A, Barker N. Ovary and fimbrial stem cells: biology, niche and cancer origins. Nat Rev Mol Cell Biol. 2015;16:625–38.

    Article  CAS  PubMed  Google Scholar 

  42. Morcel K, Camborieux L, Programme de Recherches sur les Aplasies Müllériennes, Guerrier D. Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome. Orphanet J Rare Dis. 2007;2:13. doi:10.1186/1750-1172-2-13.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Panici PB, et al. Vaginoplasty using autologous in vitro cultured vaginal tissue in a patient with Mayer–von-Rokitansky–Küster–Hauser syndrome. Hum Reprod. 2007;22:2025–8.

    Article  PubMed  Google Scholar 

  44. Raya-Rivera AM, et al. Tissue-engineered autologous vaginal organs in patients: a pilot cohort study. Lancet. 2014;384:329–36. doi:10.1016/s0140-6736(14)60542-0.

    Article  PubMed  Google Scholar 

  45. Do A-V, Khorsand B, Geary SM, Salem AK. 3D printing of scaffolds for tissue regeneration applications. Adv Healthc Mater. 2015;4:1742–62. doi:10.1002/adhm.201500168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. WHO. 10 facts on obstetric fistula. 2014 http://www.who.int/features/factfiles/obstetric_fistula/en/.

  47. Garcia-Olmo D, et al. Adipose-derived stem cells in Crohn’s rectovaginal fistula. Case Rep Med. 2010;2010:961758. doi:10.1155/2010/961758.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Petrella F, et al. Airway fistula closure after stem-cell infusion. N Engl J Med. 2015;372:96–7. doi:10.1056/NEJMc1411374.

    Article  PubMed  Google Scholar 

  49. Garcia-Olmo D, et al. Recurrent anal fistulae: limited surgery supported by stem cells. World J Gastroenterol. 2015;21:3330–6. doi:10.3748/wjg.v21.i11.3330.

    PubMed  PubMed Central  Google Scholar 

  50. Lindberg J, Rickardsson E, Andersen M, Lund L. Formation of a vesicovaginal fistula in a pig model. Res Rep Urol. 2015;7:113–6. doi:10.2147/rru.s72119.

    PubMed  PubMed Central  Google Scholar 

  51. Jelovsek JE, Maher C, Barber MD. Pelvic organ prolapse. Lancet. 2007;369:1027–38.

    Article  PubMed  Google Scholar 

  52. Colaco M, Mettu J, Badlani G. The scientific basis for the use of biomaterials in stress urinary incontinence (SUI) and pelvic organ prolapse (POP). BJU Int. 2015;115:859–66. doi:10.1111/bju.12819.

    Article  PubMed  Google Scholar 

  53. Iglesia CB, et al. Vaginal mesh for prolapse: a randomized controlled trial. Obstet Gynecol. 2010;116:293–303.

    Article  PubMed  Google Scholar 

  54. Ulrich D, et al. Human endometrial mesenchymal stem cells modulate the tissue response and mechanical behavior of polyamide mesh implants for pelvic organ prolapse repair. Tissue Eng Part A. 2014;20:785–98. doi:10.1089/ten.TEA.2013.0170.

    CAS  PubMed  Google Scholar 

  55. Ho MH, et al. Stimulating vaginal repair in rats through skeletal muscle-derived stem cells seeded on small intestinal submucosal scaffolds. Obstet Gynecol. 2009;114:300–9. doi:10.1097/AOG.0b013e3181af6abd.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Roman S, et al. Developing a tissue engineered repair material for treatment of stress urinary incontinence and pelvic organ prolapse—which cell source? NeurourolUrodyn. 2014;33:531–7. doi:10.1002/nau.22443.

    CAS  Google Scholar 

  57. Cruz M, et al. Pelvic organ distribution of mesenchymal stem cells injected intravenously after simulated childbirth injury in female rats. Obstet Gynecol Int. 2012;2012:612946. doi:10.1155/2012/612946.

    PubMed  Google Scholar 

  58. White YA, et al. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med. 2012;18:413–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Telfer EE, Albertini DF. The quest for human ovarian stem cells. Nat Med. 2012;18:353–4.

    Article  CAS  PubMed  Google Scholar 

  60. Dunlop CE, Telfer EE, Anderson RA. Ovarian stem cells—potential roles in infertility treatment and fertility preservation. Maturitas. 2013;76:279–83.

    Article  PubMed  Google Scholar 

  61. Huang JY, Tulandi T, Holzer H, Tan SL, Chian R-C. Combining ovarian tissue cryobanking with retrieval of immature oocytes followed by in vitro maturation and vitrification: an additional strategy of fertility preservation. Fertil Steril. 2008;89:567–72.

    Article  PubMed  Google Scholar 

  62. Hayashi K, et al. Offspring from oocytes derived from in vitro primordial germ cell–like cells in mice. Science. 2012;338:971–5.

    Article  CAS  PubMed  Google Scholar 

  63. Easley CA, Simerly CR, Schatten G. Stem cell therapeutic possibilities: future therapeutic options for male-factor and female-factor infertility? Reprod Biomed Online. 2013;27:75–80.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 2008;132:661–80.

    Article  CAS  PubMed  Google Scholar 

  65. Ye L, et al. Generation of human female reproductive tract epithelium from human embryonic stem cells. PLoS One. 2011;6, e21136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gargett CE, Masuda H. Adult stem cells in the endometrium. Mol Hum Reprod. 2010;16:818–34.

    Article  CAS  PubMed  Google Scholar 

  67. Deane JA, Gualano RC, Gargett CE. Regenerating endometrium from stem/progenitor cells: is it abnormal in endometriosis, Asherman’s syndrome and infertility? Curr Opin Obstet Gynecol. 2013;25:193–200.

    Article  PubMed  Google Scholar 

  68. Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update. 2016;22(2):137–63. doi:10.1093/humupd/dmv051.

    PubMed  Google Scholar 

  69. Du H, Naqvi H, Taylor HS. Ischemia/reperfusion injury promotes and granulocyte-colony stimulating factor inhibits migration of bone marrow-derived stem cells to endometrium. Stem Cells Dev. 2012;21:3324–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Alawadhi F, Du H, Cakmak H, Taylor HS. Bone Marrow-Derived Stem Cell (BMDSC) transplantation improves fertility in a murine model of Asherman’s syndrome. PLoS One. 2014;9(5), e96662.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Cervelló I, et al. Human CD133+ bone marrow-derived stem cells promote endometrial proliferation in a murine model of Asherman syndrome. Fertil Steril. 2015;104:1552–60.e3. doi:10.1016/j.fertnstert.2015.08.032.

    Article  PubMed  Google Scholar 

  72. Zhao J, Zhang Q, Wang Y, Li Y. Uterine infusion with bone marrow mesenchymal stem cells improves endometrium thickness in a rat model of thin endometrium. Reprod Sci. 2015;22:181–8.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nagori CB, Panchal SY, Patel H. Endometrial regeneration using autologous adult stem cells followed by conception by in vitro fertilization in a patient of severe Asherman’s syndrome. J Hum Reprod Sci. 2011;4:43–8. doi:10.4103/0974-1208.82360.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Singh N, et al. Autologous stem cell transplantation in refractory Asherman’s syndrome: a novel cell based therapy. J Hum Reprod Sci. 2014;7:93–8. doi:10.4103/0974-1208.138864.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mattar CN, Biswas A, Choolani M, Chan JK. The case for intrauterine stem cell transplantation. Best Pract Res Clin Obstet Gynaecol. 2012;26:683–95.

    Article  PubMed  Google Scholar 

  76. Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature. 1953;172:603–6.

    Article  CAS  PubMed  Google Scholar 

  77. Flake AW, Zanjani ED. In utero hematopoietic stem cell transplantation: ontogenic opportunities and biologic barriers. Blood. 1999;94:2179–91.

    CAS  PubMed  Google Scholar 

  78. Merianos D, Heaton T, Flake AW. In utero hematopoietic stem cell transplantation: progress toward clinical application. Biol Blood Marrow Transplant. 2008;14:729–40.

    Article  PubMed  Google Scholar 

  79. Amin M, Shazly S. In utero stem cell transplantation for radical treatment of osteogenesis imperfecta: perspectives and controversies. Am J Perinatol. 2014;31:829–36.

    Article  PubMed  Google Scholar 

  80. Carrier E, Lee T, Busch M, Cowan M. Induction of tolerance in nondefective mice after in utero. Blood. 1995;86:4681–90.

    CAS  PubMed  Google Scholar 

  81. Pearce R, et al. Induction of hemopoietic chimerism in the caprine fetus by intraperitoneal injection of fetal liver cells. Experientia. 1989;45:307–8.

    Article  CAS  PubMed  Google Scholar 

  82. Blakemore K, et al. In utero hematopoietic stem cell transplantation with haploidentical donor adult bone marrow in a canine model. Am J Obstet Gynecol. 2004;190:960–71.

    Article  PubMed  Google Scholar 

  83. Peranteau WH, et al. Haploidentical in utero hematopoietic cell transplantation improves phenotype and can induce tolerance for postnatal same-donor transplants in the canine leukocyte adhesion deficiency model. Biol Blood Marrow Transplant. 2009;15:293–305.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Vrecenak JD, et al. Stable long-term mixed chimerism achieved in a canine model of allogeneic in utero hematopoietic cell transplantation. Blood. 2014;124:1987–95.

    Article  CAS  PubMed  Google Scholar 

  85. Flake AW, Harrison MR, Adzick NS, Zanjani ED. Transplantation of fetal hematopoietic stem cells in utero: the creation of hematopoietic chimeras. Science. 1986;233:776–8.

    Article  CAS  PubMed  Google Scholar 

  86. Harrison M, et al. In-uthro transplantation of fetal liver haemopoietic stem cells in monkeys. Lancet. 1989;334:1425–7.

    Article  Google Scholar 

  87. Tarantal AF, Goldstein O, Barley F, Cowan MJ. Transplantation of human peripheral blood stem cells into fetal rhesus monkeys (Macaca mulatta). Transplantation. 2000;69:1818–23.

    Article  CAS  PubMed  Google Scholar 

  88. Cowan MJ, Golbus M. In utero hematopoietic stem cell transplants for inherited diseases. J Pediatr Hematol Oncol. 1994;16:35–42.

    CAS  Google Scholar 

  89. Renda MC, Maggio A. In utero haematopoietic stem cell transplantation (IUHSCT). Mediterr J Hematol Infect Dis. 2009;1(1), e2009031.

    PubMed  PubMed Central  Google Scholar 

  90. Touraine J, et al. In-utero transplantation of stem cells in bare lymphocyte syndrome. Lancet. 1989;333:1382.

    Article  Google Scholar 

  91. Wengler GS, et al. In-utero transplantation of parental CD34 haematopoietic progenitor cells in a patient with X-linked severe combined immunodeficiency (SCIDX1). Lancet. 1996;348:1484–7.

    Article  CAS  PubMed  Google Scholar 

  92. Flake AW, et al. Treatment of X-linked severe combined immunodeficiency by in utero transplantation of paternal bone marrow. N Engl J Med. 1996;335:1806–10.

    Article  CAS  PubMed  Google Scholar 

  93. Westgren M, et al. Prenatal T-cell reconstitution after in utero transplantation with fetal liver cells in a patient with X-linked severe combined immunodeficiency. Am J Obstet Gynecol. 2002;187:475–82.

    Article  PubMed  Google Scholar 

  94. Buckley RH, et al. Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med. 1999;340:508–16.

    Article  CAS  PubMed  Google Scholar 

  95. Muench M, et al. Transplantation of a fetus with paternal Thy-1(+)CD34(+)cells for chronic granulomatous disease. Bone Marrow Transplant. 2001;27:355–64.

    Article  CAS  PubMed  Google Scholar 

  96. Slavin S, Naparstek E, Ziegler M, Lewin A. Clinical application of intrauterine bone marrow transplantation for treatment of genetic diseases—feasibility studies. Bone Marrow Transplant. 1991;9:189–90.

    Google Scholar 

  97. Leung W, Leung K, Lau E, Tang M, Chan V. Alpha-thalassaemia. Semin Fetal Neonatal Med. 2008;13(4):215–22.

    Article  CAS  PubMed  Google Scholar 

  98. Carr S, Rubin L, Dixon D, Star J, Dailey J. Intrauterine therapy for homozygous alpha-thalassemia. Obstet Gynecol. 1995;85:876–9.

    Article  CAS  PubMed  Google Scholar 

  99. Singer ST, et al. Changing outcome of homozygous α-thalassemia: cautious optimism. J Pediatr Hematol Oncol. 2000;22:539–42.

    Article  CAS  PubMed  Google Scholar 

  100. Lücke T, Pfister S, Dürken M. Neurodevelopmental outcome and haematological course of a long‐time survivor with homozygous alpha‐thalassaemia: case report and review of the literature. Acta Paediatr. 2005;94:1330–3.

    Article  PubMed  Google Scholar 

  101. Weisz B, et al. Outcome of severely anaemic fetuses treated by intrauterine transfusions. Arch Dis Child Fetal Neonatal Ed. 2009;94:F201–4.

    Article  CAS  PubMed  Google Scholar 

  102. Derderian SC, Jeanty C, Walters MC, Vichinsky E, MacKenzie TC. In utero hematopoietic cell transplantation for hemoglobinopathies. Front Pharmacol. 2014;5:278.

    PubMed  Google Scholar 

  103. Hayward A, et al. Microchimerism and tolerance following intrauterine transplantation and transfusion for α-thalassemia-1. Fetal Diagn Ther. 1998;13:8–14.

    Article  CAS  PubMed  Google Scholar 

  104. Westgren M, et al. Lack of evidence of permanent engraftment after in utero fetal stem cell transplantation in congenital hemoglobinopathies. Transplantation. 1996;61:1176–9.

    Article  CAS  PubMed  Google Scholar 

  105. Cao A, Galanello R. Beta-thalassemia. Genet Med. 2010;12:61–76.

    Article  CAS  PubMed  Google Scholar 

  106. Diukman R, Golbus M. In utero stem cell therapy. J Reprod Med. 1992;37:515–20.

    CAS  PubMed  Google Scholar 

  107. Touraine JL, et al. In utero transplantation of hemopoietic stem cells in humans. Transplant Proc. 1991;23:1706–8.

    CAS  PubMed  Google Scholar 

  108. Renda MC, et al. In utero stem cells transplantation after a mild immunosuppression: evidence of paternal ABO cDNA in β-thalassaemia affected fetus. Blood Transfus. 2005;3:55–65.

    Google Scholar 

  109. Chakravorty S, Williams TN. Sickle cell disease: a neglected chronic disease of increasing global health importance. Arch Dis Child. 2014;100(1):48–53.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Thilaganthan B, Nicolaides K, Morgan G. Intrauterine bone-marrow transplantation at 12 weeks’ gestation. Lancet. 1993;342:243.

    Article  CAS  PubMed  Google Scholar 

  111. Linch D, Rodeck C, Nicolaides K, Jones H, Brent L. Attempted bone-marrow transplantation in a 17-week fetus. Lancet. 1986;328:1453.

    Article  Google Scholar 

  112. Harrison DE, Astle CM. Short-and long-term multilineage repopulating hematopoietic stem cells in late fetal and newborn mice: models for human umbilical cord blood. Blood. 1997;90:174–81.

    CAS  PubMed  Google Scholar 

  113. Hoyer-Kuhn H, Netzer C, Semler O. Osteogenesis imperfecta: pathophysiology and treatment. Wien Med Wochenschr. 2015;165(13–14):278–84.

    Article  PubMed  Google Scholar 

  114. Cundy T. Recent advances in osteogenesis imperfecta. Calcif Tissue Int. 2012;90:439–49.

    Article  CAS  PubMed  Google Scholar 

  115. Forlino A, Cabral WA, Barnes AM, Marini JC. New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol. 2011;7:540–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Satija NK, et al. Mesenchymal stem cell‐based therapy: a new paradigm in regenerative medicine. J Cell Mol Med. 2009;13:4385–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Guillot PV, et al. Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice. Blood. 2008;111:1717–25.

    Article  CAS  PubMed  Google Scholar 

  118. Panaroni C, et al. In utero transplantation of adult bone marrow decreases perinatal lethality and rescues the bone phenotype in the knockin murine model for classical, dominant osteogenesis imperfecta. Blood. 2009;114:459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vanleene M, et al. Transplantation of human fetal blood stem cells in the osteogenesis imperfecta mouse leads to improvement in multiscale tissue properties. Blood. 2011;117:1053–60.

    Article  CAS  PubMed  Google Scholar 

  120. Westgren L, et al. Donor chimerism across full allogenic barriers achieved by in utero transplantation of fetal mesenchymal stem cells in a case of osteogenesis imperfecta. Am J Obstet Gynecol. 2003;189:S215.

    Article  Google Scholar 

  121. Le Blanc K, et al. Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation. 2005;79:1607–14.

    Article  PubMed  Google Scholar 

  122. Bambach B, et al. Engraftment following in utero bone marrow transplantation for globoid cell leukodystrophy. Bone Marrow Transplant. 1997;19:399–402.

    Article  CAS  PubMed  Google Scholar 

  123. Leung W, et al. A human-murine chimera model for in utero human hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 1999;5:1–7.

    Article  CAS  PubMed  Google Scholar 

  124. Touraine J-L, et al. Reappraisal of in utero stem cell transplantation based on long-term results. Fetal Diagn Ther. 2004;19:305–12.

    Article  PubMed  Google Scholar 

  125. Flake AW, Zanjani ED. In utero hematopoietic stem cell transplantation: a status report. JAMA. 1997;278:932–7.

    Article  CAS  PubMed  Google Scholar 

  126. MacKenzie TC, David AL, Flake AW, Almeida-Porada G. Consensus statement from the first international conference for in utero stem cell transplantation and gene therapy. Front Pharmacol. 2015;6:15. doi:10.3389/fphar.2015.00015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Muench M. In utero transplantation: baby steps towards an effective therapy. Bone Marrow Transplant. 2005;35:537–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noha Mousa M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mousa, N., Shazly, S.A., Nassr, A.A. (2017). Clinical Applications of Stem Cells in Women’s Reproductive Health. In: El-Badri, N. (eds) Advances in Stem Cell Therapy. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-29149-9_6

Download citation

Publish with us

Policies and ethics