Skip to main content

Therapeutic Prospects of Stem Cells in Benign Urological Conditions

  • Chapter
  • First Online:
Advances in Stem Cell Therapy

Abstract

Stem cells (SC) are undifferentiated cells capable of differentiation and self-renewal, making them useful for tissue regeneration. This self-renewal capability is dependent on their surrounding tissue environment. There are several preclinical and clinical studies that examined SC use in benign urological conditions such as erectile dysfunction, Peyronie’s disease, urinary incontinence, and infertility. In this chapter, we provide a background about some of the SCs used in benign urological conditions and summarize the studies done on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin C-S, Xin Z-C, Deng C-H, Ning H, Lin G, Lue TF. Recent advances in andrology-related stem cell research. Asian J Androl. 2008;10(2):171–5.

    Article  PubMed  Google Scholar 

  2. Alwaal A, Zaid UB, Lin C-S, Lue TF. Stem cell treatment of erectile dysfunction. Adv Drug Deliv Rev. 2015;82–83:137–44.

    Article  PubMed  CAS  Google Scholar 

  3. Kiefer JC. Primer and interviews: the dynamic stem cell niche. Dev Dyn. 2011;240(3):737–43.

    Article  PubMed  Google Scholar 

  4. Sánchez-Cruz JJ, Cabrera-León A, Martín-Morales A, Fernández A, Burgos R, Rejas J. Male erectile dysfunction and health-related quality of life. Eur Urol. 2003;44(2):245–53.

    Google Scholar 

  5. Montague DK, Jarow JP, Broderick GA, Dmochowski RR, Heaton JP, Lue TF, et al. Chapter 1: the management of erectile dysfunction: an AUA update. J Urol. 2005;174(1):230–9.

    Article  PubMed  Google Scholar 

  6. Carvalheira AA, Pereira NM, Maroco J, Forjaz V. Dropout in the treatment of erectile dysfunction with PDE5: a study on predictors and a qualitative analysis of reasons for discontinuation. J Sex Med. 2012;9(9):2361–9.

    Article  PubMed  Google Scholar 

  7. Lin C-S, Xin Z, Dai J, Huang Y-C, Lue TF. Stem-cell therapy for erectile dysfunction. Expert Opin Biol Ther. 2013;13(11):1585–97.

    Article  CAS  PubMed  Google Scholar 

  8. Carrier S, Nagaraju P, Morgan DM, Baba K, Nunes L, Lue TF. Age decreases nitric oxide synthase-containing nerve fibers in the rat penis. J Urol. 1997;157(3):1088–92.

    Article  CAS  PubMed  Google Scholar 

  9. Azadzoi KM, Schulman RN, Aviram M, Siroky MB. Oxidative stress in arteriogenic erectile dysfunction: prophylactic role of antioxidants. J Urol. 2005;174(1):386–93.

    Article  CAS  PubMed  Google Scholar 

  10. Wespes E. Erectile dysfunction in the ageing man. Curr Opin Urol. 2000;10(6):625–8.

    Article  CAS  PubMed  Google Scholar 

  11. Dashwood MR, Crump A, Shi-Wen X, Loesch A. Identification of neuronal nitric oxide synthase (nNOS) in human penis: a potential role of reduced neuronally-derived nitric oxide in erectile dysfunction. Curr Pharm Biotechnol. 2011;12(9):1316–21.

    Article  CAS  PubMed  Google Scholar 

  12. Huang Y-C, Ning H, Shindel AW, Fandel TM, Lin G, Harraz AM, et al. The effect of intracavernous injection of adipose tissue-derived stem cells on hyperlipidemia-associated erectile dysfunction in a rat model. J Sex Med. 2010;7(4 Pt 1):1391–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ficarra V, Novara G, Artibani W, Cestari A, Galfano A, Graefen M, et al. Retropubic, laparoscopic, and robot-assisted radical prostatectomy: a systematic review and cumulative analysis of comparative studies. Eur Urol. 2009;55(5):1037–63.

    Article  PubMed  Google Scholar 

  14. Fode M, Ohl DA, Ralph D, Sønksen J. Penile rehabilitation after radical prostatectomy: what the evidence really says. BJU Int. 2013;112(7):998–1008.

    PubMed  Google Scholar 

  15. Carrier S, Hricak H, Lee SS, Baba K, Morgan DM, Nunes L, et al. Radiation-induced decrease in nitric oxide synthase—containing nerves in the rat penis. Radiology. 1995;195(1):95–9.

    Article  CAS  PubMed  Google Scholar 

  16. Bochinski D, Lin GT, Nunes L, Carrion R, Rahman N, Lin CS, et al. The effect of neural embryonic stem cell therapy in a rat model of cavernosal nerve injury. BJU Int. 2004;94(6):904–9.

    Article  PubMed  Google Scholar 

  17. Gou XHW, Xiao MZ, et al. Transplantation of endothelial progenitor cells transfected with VEGF165 to restore erectile function in diabetic rats. Asian J Androl. 2011;13:332–8.

    Article  CAS  PubMed  Google Scholar 

  18. Qiu X, Lin H, Wang Y, Yu W, Chen Y, Wang R, et al. Intracavernous transplantation of bone marrow-derived mesenchymal stem cells restores erectile function of streptozocin-induced diabetic rats. J Sex Med. 2011;8(2):427–36.

    Article  PubMed  Google Scholar 

  19. Fall PA, Izikki M, Tu L, Swieb S, Giuliano F, Bernabe J, et al. Apoptosis and effects of intracavernous bone marrow cell injection in a rat model of postprostatectomy erectile dysfunction. Eur Urol. 2009;56(4):716–26.

    Article  PubMed  Google Scholar 

  20. Bivalacqua TJ, Deng W, Kendirci M, Usta MF, Robinson C, Taylor BK, et al. Mesenchymal stem cells alone or ex vivo gene modified with endothelial nitric oxide synthase reverse age-associated erectile dysfunction. Am J Physiol Heart Circ Physiol. 2007;292(3):H1278–90.

    Article  CAS  PubMed  Google Scholar 

  21. Hwang JHYS, Lee JH, et al. Isolation of muscle derived stem cells from rat and its smooth muscle differentiation. Mol Cell. 2004;17:57–61.

    CAS  Google Scholar 

  22. Kim Y, de Miguel F, Usiene I, et al. Injection of skeletal muscle-derived cells into the penis improves erectile function. Int J Impot Res. 2006;18:329–34.

    Article  CAS  PubMed  Google Scholar 

  23. Song YS, Lee HJ, Park IH, Lim IS, Ku JH, Kim SU. Human neural crest stem cells transplanted in rat penile corpus cavernosum to repair erectile dysfunction. BJU Int. 2008;102(2):220–4.

    Article  CAS  PubMed  Google Scholar 

  24. Qiu X, Fandel TM, Ferretti L, Albersen M, Zhang H, Lin G, et al. Both immediate and delayed intracavernous injection of autologous adipose-derived stromal vascular fraction enhances recovery of erectile function in a rat model of cavernous nerve injury. Eur Urol. 2012;62(4):720–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ryu J-K, Tumurbaatar M, Jin H-R, Kim WJ, Kwon M-H, Piao S, et al. Intracavernous delivery of freshly isolated stromal vascular fraction rescues erectile function by enhancing endothelial regeneration in the streptozotocin-induced diabetic mouse. J Sex Med. 2012;9(12):3051–65.

    Article  PubMed  Google Scholar 

  26. Ning H, Liu G, Lin G, Yang R, Lue TF, Lin C-S. Fibroblast growth factor 2 promotes endothelial differentiation of adipose tissue-derived stem cells. J Sex Med. 2009;6(4):967–79.

    Article  CAS  PubMed  Google Scholar 

  27. Ouyang BSX, Han D, et al. Human urine-derived stem cells alone or genetically-modified with FGF2 improve type 2 diabetic erectile dysfunction in a rat model. PLoS One. 2014;3:e92825.

    Article  CAS  Google Scholar 

  28. Qiu X, Villalta J, Ferretti L, et al. Effects of intravenous injection of adipose derived stem cells in a rat model of radiation therapy-induced erectile dysfunction. J Sex Med. 2012;9:1834–41.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kim SJ, Choi SW, Hur KJ, et al. Synergistic effect of mesenchymal stem cells infected with recombinant adenovirus expressing human BDNF on erectile function in a rat model of cavernous nerve injury. Korean J Urol. 2012;53:726–32.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Choi WY, Jeon HG, Chung Y, et al. Isolation and characterization of novel, highly proliferative human CD34/CD73-double-positive testis-derived stem cells for cell therapy. Stem Cells Dev. 2013;22:2158–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. You D, Jang MJ, Lee J, Jeong IG, Kim HS, Moon KH, et al. Periprostatic implantation of human bone marrow-derived mesenchymal stem cells potentiates recovery of erectile function by intracavernosal injection in a rat model of cavernous nerve injury. Urology. 2013;81(1):104–10.

    Article  PubMed  Google Scholar 

  32. You D, Jang MJ, Lee J, Suh N, Jeong IG, Sohn DW, et al. Comparative analysis of periprostatic implantation and intracavernosal injection of human adipose tissue-derived stem cells for erectile function recovery in a rat model of cavernous nerve injury. Prostate. 2013;73(3):278–86.

    Article  CAS  PubMed  Google Scholar 

  33. Ryu J-K, Kim D-H, Song KM, Yi T, Suh J-K, Song SU. Intracavernous delivery of clonal mesenchymal stem cells restores erectile function in a mouse model of cavernous nerve injury. J Sex Med. 2014;11(2):411–23.

    Article  PubMed  Google Scholar 

  34. Gholami SS, Gonzalez-Cadavid NF, Lin C-S, Rajfer J, Lue TF. Peyronie’s disease: a review. J Urol. 2003;169(4):1234–41.

    Article  PubMed  Google Scholar 

  35. Garaffa G, Trost LW, Serefoglu EC, Ralph D, Hellstrom WJG. Understanding the course of Peyronie’s disease. Int J Clin Pract. 2013;67(8):781–8.

    Article  CAS  PubMed  Google Scholar 

  36. Lopez JA, Jarow JP. Penile vascular evaluation of men with Peyronie’s disease. J Urol. 1993;149(1):53–5.

    CAS  PubMed  Google Scholar 

  37. Martinez D, Ercole CE, Hakky TS, Kramer A, Carrion R. Peyronie’s disease: still a surgical disease. Adv Urol. 2012;2012:5.

    Article  Google Scholar 

  38. Kadioglu A, Sanli O, Akman T, Ersay A, Guven S, Mammadov F. Graft materials in Peyronie’s disease surgery: a comprehensive review. J Sex Med. 2007;4(3):581–95.

    Article  PubMed  Google Scholar 

  39. Ma L, Yang Y, Sikka SC, Kadowitz PJ, Ignarro LJ, Abdel-Mageed AB, et al. Adipose tissue-derived stem cell-seeded small intestinal submucosa for tunica albuginea grafting and reconstruction. Proc Natl Acad Sci. 2012;109(6):2090–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Castiglione F, Hedlund P, Van der Aa F, Bivalacqua TJ, Rigatti P, Van Poppel H, et al. Intratunical injection of human adipose tissue–derived stem cells prevents fibrosis and is associated with improved erectile function in a rat model of Peyronie’s disease. Eur Urol. 2013;63(3):551–60.

    Article  CAS  PubMed  Google Scholar 

  41. Meistrich ML, Finch M, da Cunha MF, Hacker U, Au WW. Damaging effects of fourteen chemotherapeutic drugs on mouse testis cells. Cancer Res. 1982;42(1):122–31.

    CAS  PubMed  Google Scholar 

  42. Yokonishi T, Sato T, Komeya M, Katagiri K, Kubota Y, Nakabayashi K, et al. Offspring production with sperm grown in vitro from cryopreserved testis tissues. Nat Commun. 2014;5:4320.

    Article  CAS  PubMed  Google Scholar 

  43. Lin C-S, Lue TF. Stem cell therapy for stress urinary incontinence: a critical review. Stem Cells Dev. 2011;21(6):834–43.

    Article  PubMed Central  CAS  Google Scholar 

  44. Alwaal AHA, Lin CS, Lue TF. Prospects of stem cell treatment in benign urological diseases. Korean J Urol. 2015;56(4):257–65.

    Article  PubMed  PubMed Central  Google Scholar 

  45. DeLancey JOL. Why do women have stress urinary incontinence? Neurourol Urodyn. 2010;29(S1):S13–7.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lin C-S. Stem cell therapy for the bladder—where do we stand? J Urol. 2011;185(3):779–80.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lin G, Wang G, Banie L, Ning H, Shindel AW, Fandel TM, et al. Treatment of stress urinary incontinence with adipose tissue-derived stem cells. Cytotherapy. 2010;12(1):88–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chancellor MB, Yokoyama T, Tirney S, Mattes CE, Ozawa H, Yoshimura N, et al. Preliminary results of myoblast injection into the urethra and bladder wall: a possible method for the treatment of stress urinary incontinence and impaired detrusor contractility. Neurourol Urodyn. 2000;19(3):279–87.

    Article  CAS  PubMed  Google Scholar 

  49. Yiou R, Dreyfus P, Chopin DK, Abbou CC, Lefaucheur JP. Muscle precursor cell autografting in a murine model of urethral sphincter injury. BJU Int. 2002;89(3):298–302.

    Article  CAS  PubMed  Google Scholar 

  50. Corcos J, Loutochin O, Campeau L, Eliopoulos N, Bouchentouf M, Blok B, et al. Bone marrow mesenchymal stromal cell therapy for external urethral sphincter restoration in a rat model of stress urinary incontinence. Neurourol Urodyn. 2011;30(3):447–55.

    Article  PubMed  Google Scholar 

  51. Kinebuchi Y, Aizawa N, Imamura T, Ishizuka O, Igawa Y, Nishizawa O. Autologous bone-marrow-derived mesenchymal stem cell transplantation into injured rat urethral sphincter. Int J Urol. 2010;17(4):359–68.

    Article  PubMed  Google Scholar 

  52. Kim SO, Na HS, Kwon D, Joo SY, Kim HS, Ahn Y. Bone-marrow-derived mesenchymal stem cell transplantation enhances closing pressure and leak point pressure in a female urinary incontinence rat model. Urol Int. 2011;86:110–6.

    Article  PubMed  Google Scholar 

  53. Zou XH, Zhi YL, Chen X, Jin HM, Wang LL, Jiang YZ, et al. Mesenchymal stem cell seeded knitted silk sling for the treatment of stress urinary incontinence. Biomaterials. 2010;31(18):4872–9.

    Article  CAS  PubMed  Google Scholar 

  54. Dissaranan C, Cruz MA, Kiedrowski MJ, Balog BM, Gill BC, Penn MS, et al. Rat mesenchymal stem cell secretome promotes elastogenesis and facilitates recovery from simulated childbirth injury. Cell Transplant. 2014;23(11):1395–406.

    Article  PubMed  Google Scholar 

  55. Deng KLD, Hanzlicek B, et al. Mesenchymal stem cells and their secretome partially restore nerve and urethral function in a dual muscle and nerve injury stress urinary incontinence model. Am J Physiol Renal Physiol. 2015;308(2):F92–100.

    Article  CAS  PubMed  Google Scholar 

  56. Lee CN, Jang JB, Kim JY, Koh C, Baek JY, Lee KJ. Human cord blood stem cell therapy for treatment of stress urinary incontinence. J Korean Med Sci. 2010;25:813–6.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fu Q, Song X-F, Liao G-L, Deng C-L, Cui L. Myoblasts differentiated from adipose-derived stem cells to treat stress urinary incontinence. Urology. 2010;75(3):718–23.

    Article  PubMed  Google Scholar 

  58. Watanabe T, Maruyama S, Yamamoto T, Kamo I, Yasuda K, Saka Y, et al. Increased urethral resistance by periurethral injection of low serum cultured adipose-derived mesenchymal stromal cells in rats. Int J Urol. 2011;18(9):659–66.

    PubMed  Google Scholar 

  59. Wu G, Song Y, Zheng X, Jiang Z. Adipose-derived stromal cell transplantation for treatment of stress urinary incontinence. Tissue Cell. 2011;43(4):246–53.

    Article  PubMed  Google Scholar 

  60. Zhao W, Zhang C, Jin C, Zhang Z, Kong D, Xu W, et al. Periurethral injection of autologous adipose-derived stem cells with controlled-release nerve growth factor for the treatment of stress urinary incontinence in a rat model. Eur Urol. 2011;59(1):155–63.

    Article  CAS  PubMed  Google Scholar 

  61. Li G-Y, Zhou F, Gong Y-Q, Cui W-S, Yuan Y-M, Song W-D, et al. Activation of VEGF and ERK1/2 and improvement of urethral function by adipose-derived stem cells in a rat stress urinary incontinence model. Urology. 2012;80(4):953.e1–8.

    PubMed  Google Scholar 

  62. Shi LB, Cai HX, Chen LK, Wu Y, Zhu SA, Gong XN, et al. Tissue engineered bulking agent with adipose-derived stem cells and silk fibroin microspheres for the treatment of intrinsic urethral sphincter deficiency. Biomaterials. 2014;35(5):1519–30.

    Article  CAS  PubMed  Google Scholar 

  63. Kim BS, Chun SY, Lee JK, Lim HJ, Bae J-S, Chung H-Y, et al. Human amniotic fluid stem cell injection therapy for urethral sphincter regeneration in an animal model. BMC Med. 2012;10(1):94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chun SY, Cho DH, Chae SY, Choi KH, Lim HJ, Yoon GS, et al. Human amniotic fluid stem cell-derived muscle progenitor cell therapy for stress urinary incontinence. J Korean Med Sci. 2012;27(11):1300–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chun SY, Kwon JB, Chae SY, Lee JK, Bae J-S, Kim BS, et al. Combined injection of three different lineages of early-differentiating human amniotic fluid-derived cells restores urethral sphincter function in urinary incontinence. BJU Int. 2014;114(5):770–83.

    Article  PubMed  Google Scholar 

  66. Choi JYCS, Kim BS, et al. Pre-clinical efficacy and safety evaluation of human amniotic fluid-derived stem cell injection in a mouse model of urinary incontinence. Yonsei Med J. 2015;56(3):648–57.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Badra S, Andersson K-E, Dean A, Mourad S, Williams JK. Long-term structural and functional effects of autologous muscle precursor cell therapy in a nonhuman primate model of urinary sphincter deficiency. J Urol. 2013;190(5):1938–45.

    Article  PubMed  Google Scholar 

  68. Williams JK, Eckman D, Dean A, et al. The dose-effect safety profile of skeletal muscle precursor cell therapy in a dog model of intrinsic urinary sphincter deficiency. Stem cells Transl Med. 2015;4(3):286–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jiang H-H, Damaser M. Animal models of stress urinary incontinence. In: Andersson K-E, Michel MC, editors. Urinary tract. Handbook of experimental pharmacology. Berlin: Springer; 2011. p. 45–67.

    Chapter  Google Scholar 

  70. Lin AS, Carrier S, Morgan DM, Lue TF. Effect of simulated birth trauma on the urinary continence mechanism in the rat. Urology. 1998;52(1):143–51.

    Article  CAS  PubMed  Google Scholar 

  71. Sievert K-D, Emre Bakircioglu M, Tsai T, Dahms SE, Nunes L, Lue TF. The effect of simulated birth trauma and/or ovariectomy on rodent continence mechanism. Part I: functional and structural change. J Urol. 2001;166(1):311–7.

    Article  CAS  PubMed  Google Scholar 

  72. Pauwels E, De Wachter S, Wyndaele J-J. Evaluation of different techniques to create chronic urinary incontinence in the rat. BJU Int. 2009;103(6):782–6.

    Article  PubMed  Google Scholar 

  73. Rodríguez LV, Chen S, Jack GS, de Almeida F, Lee KW, Zhang R. New objective measures to quantify stress urinary incontinence in a novel durable animal model of intrinsic sphincter deficiency. Am J Physiol Regul Integr Comp Physiol. 2005;288(5):R1332–8.

    Article  PubMed  CAS  Google Scholar 

  74. Lin Y-H, Liu G, Li M, Xiao N, Daneshgari F. Recovery of continence function following simulated birth trauma involves repair of muscle and nerves in the urethra in the female mouse. Eur Urol. 2010;57(3):506–13.

    Article  PubMed  Google Scholar 

  75. Mitterberger M, Marksteiner R, Margreiter E, Pinggera GM, Colleselli D, Frauscher F, et al. Autologous myoblasts and fibroblasts for female stress incontinence: a 1-year follow-up in 123 patients. BJU Int. 2007;100(5):1081–5.

    PubMed  Google Scholar 

  76. Mitterberger M, Marksteiner R, Margreiter E, Pinggera GM, Frauscher F, Ulmer H, et al. Myoblast and fibroblast therapy for post-prostatectomy urinary incontinence: 1-year followup of 63 patients. J Urol. 2008;179(1):226–31.

    Article  PubMed  Google Scholar 

  77. Mitterberger M, Pinggera G-M, Marksteiner R, Margreiter E, Fussenegger M, Frauscher F, et al. Adult stem cell therapy of female stress urinary incontinence. Eur Urol. 2008;53(1):169–75.

    Article  PubMed  Google Scholar 

  78. Strasser H, Marksteiner R, Margreiter E, Mitterberger M, Pinggera GM, Frauscher F, et al. RETRACTED ARTICLE: transurethral ultrasonography-guided injection of adult autologous stem cells versus transurethral endoscopic injection of collagen in treatment of urinary incontinence. World J Urol. 2007;25(4):385–92.

    Article  CAS  PubMed  Google Scholar 

  79. Strasser H, Marksteiner R, Margreiter E, Pinggera GM, Mitterberger M, Frauscher F, et al. RETRACTED: Autologous myoblasts and fibroblasts versus collagen for treatment of stress urinary incontinence in women: a randomised controlled trial. Lancet. 2007;369(9580):2179–86.

    Article  CAS  PubMed  Google Scholar 

  80. Carr LK, Steele D, Steele S, Wagner D, Pruchnic R, Jankowski R, et al. 1-year follow-up of autologous muscle-derived stem cell injection pilot study to treat stress urinary incontinence. Int Urogynecol J. 2008;19(6):881–3.

    Article  CAS  Google Scholar 

  81. Yamamoto T, Gotoh M, Hattori R, Toriyama K, Kamei Y, Iwaguro H, Matsukawa Y, Funahashi Y. Periurethral injection of autologous adipose-derived stem cells for the treatment of stress urinary incontinence in patients undergoing radical prostatectomy: report of two initial cases. Int J Urol. 2010;17:75–82.

    Article  PubMed  Google Scholar 

  82. Sèbe P, Doucet C, Cornu J-N, Ciofu C, Costa P, de Medina S, et al. Intrasphincteric injections of autologous muscular cells in women with refractory stress urinary incontinence: a prospective study. Int Urogynecol J. 2011;22(2):183–9.

    Article  PubMed  Google Scholar 

  83. Yamamoto T, Gotoh M, Kato M, Majima T, Toriyama K, Kamei Y, et al. Periurethral injection of autologous adipose-derived regenerative cells for the treatment of male stress urinary incontinence: report of three initial cases. Int J Urol. 2012;19(7):652–9.

    Article  PubMed  Google Scholar 

  84. Gotoh M, Yamamoto T, Kato M, Majima T, Toriyama K, Kamei Y, et al. Regenerative treatment of male stress urinary incontinence by periurethral injection of autologous adipose-derived regenerative cells: 1-year outcomes in 11 patients. Int J Urol. 2014;21(3):294–300.

    Article  PubMed  Google Scholar 

  85. Stangel-Wojcikiewicz K, Jarocha D, Piwowar M, Jach R, Uhl T, Basta A, et al. Autologous muscle-derived cells for the treatment of female stress urinary incontinence: a 2-year follow-up of a polish investigation. Neurourol Urodyn. 2014;33(3):324–30.

    Article  PubMed  Google Scholar 

  86. Kuismanen K, Sartoneva R, Haimi S, Mannerström B, Tomás E, Miettinen S, et al. Autologous adipose stem cells in treatment of female stress urinary incontinence: results of a pilot study. Stem Cells Transl Med. 2014;3(8):936–41.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Nolazco G, Kovanecz I, Vernet D, Gelfand RA, Tsao J, Ferrini MG, et al. Effect of muscle-derived stem cells on the restoration of corpora cavernosa smooth muscle and erectile function in the aged rat. BJU Int. 2008;101(9):1156–64.

    Article  CAS  PubMed  Google Scholar 

  88. Garcia MM, Fandel TM, Lin G, Shindel AW, Banie L, Lin C-S, et al. Treatment of erectile dysfunction in the obese type 2 diabetic ZDF rat with adipose tissue-derived stem cells. J Sex Med. 2010;7(1 Pt 1):89–98.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Albersen M, Fandel TM, Lin G, Wang G, Banie L, Lin C-S, et al. Injections of adipose tissue-derived stem cells and stem cell lysate improve recovery of erectile function in a rat model of cavernous nerve injury. J Sex Med. 2010;7(10):3331–40.

    Article  PubMed  Google Scholar 

  90. Kendirci M, Trost L, Bakondi B, Whitney MJ, Hellstrom WJG, Spees JL. Transplantation of nonhematopoietic adult bone marrow stem/progenitor cells isolated by p75 nerve growth factor receptor into the penis rescues erectile function in a rat model of cavernous nerve injury. J Urol. 2010;184(4):1560–6.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Abdel Aziz MT, El-Haggar S, Mostafa T, Atta H, Fouad H, Mahfouz S, et al. Effect of mesenchymal stem cell penile transplantation on erectile signaling of aged rats. Andrologia. 2010;42(3):187–92.

    Article  CAS  PubMed  Google Scholar 

  92. Lin G, Albersen M, Harraz AM, Fandel TM, Garcia M, McGrath MH, et al. Cavernous nerve repair with allogenic adipose matrix and autologous adipose-derived stem cells. Urology. 2011;77(6):1509.e1–8.

    Article  PubMed  Google Scholar 

  93. Woo JC, Bae WJ, Kim SJ, Kim SD, Sohn DW, Hong SH, et al. Transplantation of muscle-derived stem cells into the corpus cavernosum restores erectile function in a rat model of cavernous nerve injury. Korean J Urol. 2011;52(5):359–63.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Qiu X, Sun C, Yu W, Lin H, Sun Z, Chen Y, et al. Combined strategy of mesenchymal stem cell injection with vascular endothelial growth factor gene therapy for the treatment of diabetes-associated erectile dysfunction. J Androl. 2012;33(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  95. Kovanecz I, Rivera S, Nolazco G, Vernet D, Segura D, Gharib S, et al. Separate or combined treatments with daily sildenafil, molsidomine, or muscle-derived stem cells prevent erectile dysfunction in a rat model of cavernosal nerve damage. J Sex Med. 2012;9(11):2814–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sun C, Lin H, Yu W, Li X, Chen Y, Qiu X, et al. Neurotrophic effect of bone marrow mesenchymal stem cells for erectile dysfunction in diabetic rats. Int J Androl. 2012;35(4):601–7.

    Article  CAS  PubMed  Google Scholar 

  97. Fandel TM, Albersen M, Lin G, Qiu X, Ning H, Banie L, et al. Recruitment of intracavernously injected adipose-derived stem cells to the major pelvic ganglion improves erectile function in a rat model of cavernous nerve injury. Eur Urol. 2012;61(1):201–10.

    Article  PubMed  Google Scholar 

  98. Nishimatsu H, Suzuki E, Kumano S, Nomiya A, Liu M, Kume H, et al. Adrenomedullin mediates adipose tissue-derived stem cell-induced restoration of erectile function in diabetic rats. J Sex Med. 2012;9(2):482–93.

    Article  CAS  PubMed  Google Scholar 

  99. Piao SKI, Lee JY, et al. Therapeutic effect of adipose-derived stem cells and BDNF-immobilized PLGA membrane in a rat model of cavernous nerve injury. J Sex Med. 2012;9:1968–79.

    Article  CAS  PubMed  Google Scholar 

  100. Jeong HH, Piao S, Ha JN, Kim IG, Oh SH, Lee JH, et al. Combined therapeutic effect of udenafil and adipose-derived stem cell (ADSC)/brain-derived neurotrophic factor (BDNF)–membrane system in a rat model of cavernous nerve injury. Urology. 2013;81(5):1108.e7–14.

    Article  PubMed  Google Scholar 

  101. Kim IG, Piao S, Lee JY, et al. Effect of an adipose-derived stem cell and nerve growth factor-incorporated hydrogel on recovery of erectile function in a rat model of cavernous nerve injury. Tissue Eng Part A. 2013;19:14–23.

    Article  CAS  PubMed  Google Scholar 

  102. Ying C, Yang M, Zheng X, Hu W, Wang X. Effects of intracavernous injection of adipose-derived stem cells on cavernous nerve regeneration in a rat model. Cell Mol Neurobiol. 2013;33(2):233–40.

    Article  PubMed  Google Scholar 

  103. He Y, He W, Qin G, Luo J, Xiao M. Transplantation KCNMA1 modified bone marrow-mesenchymal stem cell therapy for diabetes mellitus-induced erectile dysfunction. Andrologia. 2014;46(5):479–86.

    Article  CAS  PubMed  Google Scholar 

  104. Liu GSX, Bian J, et al. Correction of diabetic erectile dysfunction with adipose derived stem cells modified with the vascular endothelial growth factor gene in a rodent diabetic model. PLoS One. 2013;8(8):e72790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ying C, Hu W, Cheng B, Yang M, Zheng X, Wang X. Erectile function restoration after repair of resected cavernous nerves by adipose-derived stem cells combined with autologous vein graft in rats. Cell Mol Neurobiol. 2014;34(3):393–402.

    Article  PubMed  Google Scholar 

  106. Das ND, Song K-M, Yin GN, Batbold D, Kwon M-H, Kwon K-D, et al. Xenogenic transplantation of human breast adipose-derived stromal vascular fraction enhances recovery of erectile function in diabetic mice. Biol Reprod. 2014;90(3):66, 1–10.

    Article  PubMed  CAS  Google Scholar 

  107. Gokce A, Abd Elmageed ZY, Lasker GF, Bouljihad M, Kim H, Trost LW, et al. Adipose tissue–derived stem cell therapy for prevention and treatment of erectile dysfunction in a rat model of Peyronie’s disease. Andrology. 2014;2(2):244–51.

    Article  CAS  PubMed  Google Scholar 

  108. Lee SH, Kim IG, Jung AR, et al. Combined effects of brain-derived neurotrophic factor immobilized poly-lactic-co-glycolic acid membrane with human adipose-derived stem cells and basic fibroblast growth factor hydrogel on recovery of erectile dysfunction. Tissue Eng Part A. 2014;20(17–18):2446–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Song KMJH, Park JM, et al. Intracavernous delivery of stromal vascular fraction restores erectile function through production of angiogenic factors in a mouse model of cavernous nerve injury. J Sex Med. 2014;11(8):1962–73.

    Article  CAS  PubMed  Google Scholar 

  110. Mangir NAC, Tarcan T, et al. Mesenchymal stem cell therapy in treatment of erectile dysfunction: autologous or allogeneic cell sources? Int J Urol. 2014;21(12):1280–5.

    Article  PubMed  Google Scholar 

  111. Bae JH, Shrestha KR, Park YH, et al. Comparison between subcutaneous injection of basic fibroblast growth factor-hydrogel and intracavernous injection of adipose-derived stem cells in a rat model of cavernous nerve injury. Urology. 2014;84(5):1248.e1–7.

    Article  PubMed  Google Scholar 

  112. You D, Jang MJ, Kim BH, et al. Comparative study of autologous stromal vascular fraction and adipose-derived stem cells for erectile function recovery in a rat model of cavernous nerve injury. Stem cells Transl Med. 2015;4(4):351–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gokce A, Abd Elmageed ZY, Lasker GF, et al. Intratunical injection of genetically modified adipose tissue-derived stem cells with human interferon α-2b for treatment of erectile dysfunction in a rat model of tunica albugineal fibrosis. J Sex Med. 2015;12(7):1533–44. doi:10.1111/jsm.12916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lee JY, Cannon TW, Pruchnic R, Fraser MO, Huard J, Chancellor MB. The effects of periurethral muscle-derived stem cell injection on leak point pressure in a rat model of stress urinary incontinence. Int Urogynecol J. 2003;14(1):31–7.

    Article  CAS  Google Scholar 

  115. Yiou R, Yoo JJ, Atala A. Restoration of functional motor units in a rat model of sphincter injury by muscle precursor cell autografts. Transplantation. 2003;76:1053–60.

    Article  PubMed  Google Scholar 

  116. Cannon TW, Lee JY, Somogyi G, Pruchnic R, Smith CP, Huard J, et al. Improved sphincter contractility after allogenic muscle-derived progenitor cell injection into the denervated rat urethra. Urology. 2003;62(5):958–63.

    Article  PubMed  Google Scholar 

  117. Chermansky CJ, Tarin T, Kwon D-D, Jankowski RJ, Cannon TW, de Groat WC, et al. Intraurethral muscle-derived cell injections increase leak point pressure in a rat model of intrinsic sphincter deficiency. Urology. 2004;63(4):780–5.

    Article  PubMed  Google Scholar 

  118. Lee JY, Paik SY, Yuk SH, Lee JH, Ghil SH, Lee SS. Long term effects of muscle-derived stem cells on leak point pressure and closing pressure in rats with transected pudendal nerves. Mol Cells. 2004;18:309–13.

    CAS  PubMed  Google Scholar 

  119. Yiou R, Yoo JJ, Atala A. Failure of differentiation into mature myotubes by muscle precursor cells with the side-population phenotype after injection into irreversibly damaged striated urethral sphincter. Transplantation. 2005;80(1):131–3.

    Article  PubMed  Google Scholar 

  120. Kwon D, Kim Y, Pruchnic R, Jankowski R, Usiene I, de Miguel F, et al. Periurethral cellular injection: comparison of muscle-derived progenitor cells and fibroblasts with regard to efficacy and tissue contractility in an animal model of stress urinary incontinence. Urology. 2006;68(2):449–54.

    Article  PubMed  Google Scholar 

  121. Kim YT, Kyung Kim D, Jankowski RJ, Pruchnic R, Usiene I, De Miguel F, et al. Human muscle-derived cell injection in a rat model of stress urinary incontinence. Muscle Nerve. 2007;36(3):391–3.

    Article  PubMed  Google Scholar 

  122. Hoshi A, Tamaki T, Tono K, Okada Y, Akatsuka A, Usui Y, Terachi T. Reconstruction of radical prostatectomy- induced urethral damage using skeletal muscle-derived multipotent stem cells. Transplantation. 2008;85:1617–24.

    Article  PubMed  Google Scholar 

  123. Furuta A, Jankowski R, Pruchnic R, Egawa S, Yoshimura N, Chancellor M. Physiological effects of human muscle-derived stem cell implantation on urethral smooth muscle function. Int Urogynecol J. 2008;19(9):1229–34.

    Article  Google Scholar 

  124. Lim JJ, Jang JB, Kim JY, Moon SH, Lee CN, Lee KJ. Human umbilical cord blood mononuclear cell transplantation in rats with intrinsic sphincter deficiency. J Korean Med Sci. 2010;25:663–70.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Xu Y, Song YF, Lin ZX. Transplantation of muscle-derived stem cells plus biodegradable fibrin glue restores the urethral sphincter in a pudendal nerve-transected rat model. Braz J Med Biol Res. 2010;43:1076–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author Disclosure Statement

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad Alwaal M.D., M.Sc., F.R.C.S.C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alwaal, A., Lue, T.F. (2017). Therapeutic Prospects of Stem Cells in Benign Urological Conditions. In: El-Badri, N. (eds) Advances in Stem Cell Therapy. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-29149-9_5

Download citation

Publish with us

Policies and ethics