Skip to main content

Stem Cell Therapy in Diabetes Mellitus

  • Chapter
  • First Online:
Advances in Stem Cell Therapy

Abstract

Diabetes mellitus is a widespread chronic disease. Type 1 diabetes mellitus (DM) requires insulin replacement for life. Pancreatic islets or the whole organ transplantation is an ideal alternative, but is hampered by shortage of cadaveric organs. Type 2 DM can be initially controlled by medication, but eventually one third of patients become insulin dependent. Efforts to develop insulin-producing cells (IPCs) from a variety of sources are under investigation. In view of their high proliferation rate and trilineage potential, embryonic stem cells (ESCs) offer an attractive source for stem cell therapy in DM. However clinical application of ESCs has several concerns including teratogenicity, immunogenicity, and ethical considerations. These drawbacks may be overcome by manipulation of the transplanted cells via encapsulation. Induced pluripotent stem cells have similar properties to ESCs as they exhibit high proliferation and trilineage potential. Most importantly, they offer the possibility of producing autologous cells. However, the rate of conversion of somatic cells into pluripotency is very low. Mesenchymal stem cells from a variety of sources are used to get insulin-producing cells either by genetic manipulations or directed differentiation. The proportion of the resulting functional cells is small. However transplantation in nude mice results in euglycemia. Evidence had been provided that this is the result of further maturation in vivo.

It is expected that within the next few years shall witness definitive treatment by stem cells particularly for type I DM. In addition, the use of stem cells for treatment of diabetic complications had also been reported.

In spite of the remaining important challenges, it is reasonable to believe that β-cell replacement therapy may become a clinical reality in the not so far future. In addition, the use of stem cells for the treatment of diabetic complications is also under investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Global status report of noncommunicable disease 2014. Geneva: World Health Organization; 2012.

    Google Scholar 

  2. Koro CE, Bowlin SJ, Bourgeois N, Fedder DO. Glycemic control from 1988 to 2000 among U.S. adults diagnosed with type 2 diabetes: a preliminary report. Diabetes Care. 2004;27(1):17–20.

    Article  PubMed  Google Scholar 

  3. Lumelsky N, Blondel O, Laeng P, Valesco I, Ravin R, Mckay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science. 2001;292:1389–94.

    Article  CAS  PubMed  Google Scholar 

  4. Segev H, Fishman B, Ziskind A, Shulman M, Itskovitz-Eldor J. Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells. 2004;22:265–74.

    Article  CAS  PubMed  Google Scholar 

  5. Rajagopal J, Anderson WJ, Kume S, Martinez OI, Melton DA. Insulin staining of ES cell progeny from insulin uptake. Science. 2003;299(5605):363.

    PubMed  Google Scholar 

  6. Paek HJ, Morgan JR, Lysaght MJ. Sequestration and synthesis: the source of insulin in cell clusters differentiated from murine embryonic stem cells. Stem Cells. 2005;23(7):862–7.

    Article  CAS  PubMed  Google Scholar 

  7. D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24(11):1392–401.

    Article  PubMed  Google Scholar 

  8. D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005;23(12):1534–41.

    Article  PubMed  Google Scholar 

  9. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26(4):443–52.

    Article  CAS  PubMed  Google Scholar 

  10. Schulz TC, Young HY, Agulnick AD, Babin MJ, Baetge EE, Bang AG, et al. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS One. 2012;7(5):e37004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rezania A, Bruin JE, Riedel MJ, Mojibian M, Asadi A, Xu J, Gauvin R, Narayan K, Karanu F, O’Neil JJ, Ao Z, Warnock GL, Kieffer TJ. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes. 2012;61(8):2016–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pagliuca FW, Millman JR, Gürtler M, Segel M, Van Dervort A, Ryu JH, et al. Generation of functional human pancreatic ß-cells in vitro. Cell. 2014;159(2):428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  14. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  CAS  PubMed  Google Scholar 

  15. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322(5903):949–53.

    Article  CAS  PubMed  Google Scholar 

  16. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature. 2009;458(7239):771–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamanaka S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell. 2012;10(6):678–84.

    Article  CAS  PubMed  Google Scholar 

  18. Puri MC, Nagy A. Concise review: embryonic stem cells versus induced pluripotent stem cells: the game is on. Stem Cells. 2012;30(1):10–4.

    Article  CAS  PubMed  Google Scholar 

  19. Bar-Nur O, Russ HA, Efrat S, Benvenisty N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell. 2011;9(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  20. Tateishi K, He J, Taranova O, Liang G, D’Alessio AC, Zhang Y. Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem. 2008;283(46):31601–7.

    Article  CAS  PubMed  Google Scholar 

  21. Alipio Z, Liao W, Roemer EJ, Waner M, Fink LM, Ward DC, et al. Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic beta-like cells. Proc Natl Acad Sci U S A. 2010;107(30):13426–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu FF, Zhang PB, Zhang DH, Sui X, Yin M, Xiang TT, et al. Generation of pancreatic insulin-producing cells from rhesus monkey induced pluripotent stem cells. Diabetologia. 2011;54(9):2325–36.

    Article  CAS  PubMed  Google Scholar 

  23. Jeon K, Lim H, Kim JH, Thuan NV, Park SH, Lim YM, et al. Differentiation and transplantation of functional pancreatic beta cells generated from induced pluripotent stem cells derived from a type 1 diabetes mouse model. Stem Cells Dev. 2012;21(14):2642–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pellegrini S, Ungaro F, Mercalli A, Melzi R, Sebastiani G, Dotta F, et al. Human induced pluripotent stem cells differentiate into insulin-producing cells able to engraft in vivo. Acta Diabetol. 2015;52(6):1025–35.

    Article  CAS  PubMed  Google Scholar 

  25. Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966;16(3):381–90.

    CAS  PubMed  Google Scholar 

  26. Owen M. Marrow stromal stem cells. J Cell Sci Suppl. 1988;10:63–76.

    Article  CAS  PubMed  Google Scholar 

  27. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641–50.

    Article  CAS  PubMed  Google Scholar 

  28. Horwitz EM, Keating A. Nonhematopoietic mesenchymal stem cells: what are they? Cytotherapy. 2000;2(5):387–8.

    Article  CAS  PubMed  Google Scholar 

  29. Gimble JM, Guilak F, Nuttall ME, Sathishkumar S, Vidal M, Bunnell BA. In vitro differentiation potential of mesenchymal stem cells. Transfus Med Hemother. 2008;35(3):228–38.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, et al. Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy. 2005;7(5):393–5.

    Article  CAS  PubMed  Google Scholar 

  31. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  CAS  PubMed  Google Scholar 

  32. Gabr MM, Zakaria MM, Refaie AF, Ismail AM, Abou-El-Mahasen MA, Ashamallah SA, et al. Insulin-producing cells from adult human bone marrow mesenchymal stem cells control streptozotocin-induced diabetes in nude mice. Cell Transplant. 2013;22(1):133–45.

    Article  PubMed  Google Scholar 

  33. Sun Y, Chen L, Hou XG, Hou WK, Dong JJ, Sun L, et al. Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chin Med J (Engl). 2007;120(9):771–6.

    CAS  Google Scholar 

  34. Karnieli O, Izhar-Prato Y, Bulvik S, Efrat S. Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells. 2007;25(11):2837–44.

    Article  CAS  PubMed  Google Scholar 

  35. Timper K, Seboek D, Eberhardt M, Linscheid P, Christ-Crain M, Keller U, Müller B, Zulewski H. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun. 2006;341(4):1135–40.

    Article  CAS  PubMed  Google Scholar 

  36. Wang HS, Shyu JF, Shen WS, Hsu HC, Chi TC, Chen CP, et al. Transplantation of insulin-producing cells derived from umbilical cord stromal mesenchymal stem cells to treat NOD mice. Cell Transplant. 2011;20(3):455–66.

    Article  CAS  PubMed  Google Scholar 

  37. Prabakar KR, Domínguez-Bendala J, Molano RD, Pileggi A, Villate S, Ricordi C, et al. Generation of glucose-responsive, insulin-producing cells from human umbilical cord blood-derived mesenchymal stem cells. Cell Transplant. 2012;21(6):1321–39.

    Article  PubMed  Google Scholar 

  38. Santamaria X, Massasa EE, Feng Y, Wolff E, Taylor HS. Derivation of insulin producing cells from human endometrial stromal stem cells and use in the treatment of murine diabetes. Mol Ther. 2011;19(11):2065–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sapir T, Shternhall K, Meivar-Levy I, Blumenfeld T, Cohen H, Skutelsky E, et al. Cell-replacement therapy for diabetes: generating functional insulin-producing tissue from adult human liver cells. Proc Natl Acad Sci U S A. 2005;102(22):7964–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Van Thi DH, Loke WT, Kee I, Liang V, David SJ, Gan SU, et al. Characterization of insulin-secreting porcine bone marrow stromal cells ex vivo and autologous cell therapy in vivo. Cell Transplant. 2015;24(7):1205–20.

    Article  Google Scholar 

  41. Wong RS. Extrinsic factors involved in the differentiation of stem cells into insulin-producing cells: an overview. Exp Diabetes Res. 2011;2011:406182.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dave S. Extrinsic factors promoting insulin producing cell-differentiation and insulin expression enhancement-hope for diabetics. Curr Stem Cell Res Ther. 2013;8(6):471–83.

    Article  CAS  PubMed  Google Scholar 

  43. Tang DQ, Cao LZ, Burkhardt BR, Xia CQ, Litherland SA, Atkinson MA, Yang LJ. In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes. 2004;53(7):1721–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gabr MM, Sobh MM, Zakaria MM, Refaie AF, Ghoneim MA. Transplantation of insulin-producing clusters derived from adult bone marrow stem cells to treat diabetes in rats. Exp Clin Transplant. 2008;6(3):236–43.

    PubMed  Google Scholar 

  45. Chandra V, S G, Phadnis S, Nair PD, Bhonde RR. Generation of pancreatic hormone-expressing islet-like cell aggregates from murine adipose tissue-derived stem cells. Stem Cells. 2009;27(8):1941–53.

    Article  CAS  PubMed  Google Scholar 

  46. Zhao M, Amiel SA, Ajami S, Jiang J, Rela M, Heaton N, et al. Amelioration of streptozotocin-induced diabetes in mice with cells derived from human marrow stromal cells. PLoS One. 2008;3(7):e2666.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gabr MM, Zakaria MM, Refaie AF, Khater SM, Ashamallah SA, Ismail AM, El-Badri N, Ghoneim MA. Generation of insulin-producing cells from human bone marrow-derived mesenchymal stem cells: comparison of three differentiation protocols. Biomed Res Int. 2014;2014:832736.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bhonde RR, Sheshadri P, Sharma S, Kumar A. Making surrogate β-cells from mesenchymal stromal cells: perspectives and future endeavors. Int J Biochem Cell Biol. 2014;46:90–102.

    Article  CAS  PubMed  Google Scholar 

  49. Oh SH, Muzzonigro TM, Bae SH, LaPlante JM, Hatch HM, Petersen BE. Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab Invest. 2004;84(5):607–17.

    Article  CAS  PubMed  Google Scholar 

  50. Gabr MM, Zakaria MM, Refaie AF, Khater SM, Ashamallah SA, Ismail AM, El-halawani S, Ghoneim MA. Differentiation of human bone marrow-derived mesenchymal stem cells into insulin-producing cells: evidence for further maturation in vivo. Biomed Res Int. 2015;2015:575837.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Phadnis SM, Joglekar MV, Dalvi MP, Muthyala S, Nair PD, Ghaskadbi SM, et al. Human bone marrow-derived mesenchymal cells differentiate and mature into endocrine pancreatic lineage in vivo. Cytotherapy. 2011;13(3):279–93.

    Article  PubMed  Google Scholar 

  52. Hardikar AA, Bhonde RR. Modulating experimental diabetes by treatment with cytosolic extract from the regenerating pancreas. Diabetes Res Clin Pract. 1999;46(3):203–11.

    Article  CAS  PubMed  Google Scholar 

  53. Choi KS, Shin JS, Lee JJ, Kim YS, Kim SB, Kim CW. In vitro trans-differentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract. Biochem Biophys Res Commun. 2005;330(4):1299–305.

    Article  CAS  PubMed  Google Scholar 

  54. Ratajczak MZ, Zuba-Surma EK, Wojakowski W, Ratajczak J, Kucia M. Bone marrow—home of versatile stem cells. Transfus Med Hemother. 2008;35(3):248–59.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood. 2001;98(9):2615–25.

    Article  CAS  PubMed  Google Scholar 

  56. Kögler G, Sensken S, Airey JA, Trapp T, Müschen M, Feldhahn N, et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med. 2004;200(2):123–35.

    Article  PubMed  PubMed Central  Google Scholar 

  57. D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC. Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci. 2004;117(Pt 14):2971–81.

    Article  PubMed  Google Scholar 

  58. Ratajczak MZ, Zuba-Surma EK, Machalinski B, Ratajczak J, Kucia M. Very small embryonic-like (VSEL) stem cells: purification from adult organs, characterization, and biological significance. Stem Cell Rev. 2008;4(2):89–99.

    Article  PubMed  Google Scholar 

  59. Wiese C, Rolletschek A, Kania G, Blyszczuk P, Tarasov KV, Tarasov Y, et al. Nestin expression—a property of multi-lineage progenitor cells? Cell Mol Life Sci. 2004;61(19–20):2510–22.

    Article  CAS  PubMed  Google Scholar 

  60. Kabos P, Ehtesham M, Kabosova A, Black KL, Yu JS. Generation of neural progenitor cells from whole adult bone marrow. Exp Neurol. 2002;178(2):288–93.

    Article  CAS  PubMed  Google Scholar 

  61. Milanesi A, Lee JW, Xu Q, Perin L, Yu JS. Differentiation of nestin-positive cells derived from bone marrow into pancreatic endocrine and ductal cells in vitro. J Endocrinol. 2011;209(2):193–201.

    Article  CAS  PubMed  Google Scholar 

  62. Kuroda Y, Kitada M, Wakao S, Nishikawa K, Tanimura Y, Makinoshima H, et al. Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci U S A. 2010;107(19):8639–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim H, Kim JJ, Yoon YS. Emerging therapy for diabetic neuropathy: cell therapy targeting vessels and nerves. Endocr Metab Immune Disord Drug Targets. 2012;12(2):168–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang Z, Li K, Yan X, Dong F, Zhao C. Amelioration of diabetic retinopathy by engrafted human adipose-derived mesenchymal stem cells in streptozotocin diabetic rats. Graefes Arch Clin Exp Ophthalmol. 2010;248(10):1415–22.

    Article  PubMed  Google Scholar 

  65. O’Loughlin A, Kulkarni M, Creane M, Vaughan MM, Mooney E, Shaw G, et al. Topical administration of allogeneic mesenchymal stromal cells seeded in a collagen scaffold augments wound healing and increases angiogenesis in the diabetic rabbit ulcer. Diabetes. 2013;62(7):2588–94.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wang S, Li Y, Zhao J, Zhang J, Huang Y. Mesenchymal stem cells ameliorate podocyte injury and proteinuria in a type 1 diabetic nephropathy rat model. Biol Blood Marrow Transplant. 2013;19(4):538–46.

    Article  PubMed  Google Scholar 

  67. Huang YC, Leung VY, Lu WW, Luk KD. The effects of microenvironment in mesenchymal stem cell-based regeneration of intervertebral disc. Spine J. 2013;13(3):352–62.

    Article  PubMed  Google Scholar 

  68. Venkatesan V, Madhira SL. Promise(s) of using mesenchymal stem cells in reproductive disorders. Indian J Med Res. 2014;140(Suppl):S98–105.

    PubMed  PubMed Central  Google Scholar 

  69. Hernigou P, Guissou I, Homma Y, Poignard A, Chevellier N, Rouard H, et al. Percutaneous injection of bone marrow mesenchymal stem cells for ankle non-unions decreases complications in patients with diabetes. Int Orthop. 2015;39(8):1639–43.

    Article  PubMed  Google Scholar 

  70. Calne R, Ghoneim MA. Novel diabetes therapy: the seven pillars of credibility. Treatment Strategies Diabetes. 2010. www.treatmentstrategies.co

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Ghoneim MD, MD (Hon), FACS (Hon) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ghoneim, M.A., Refaie, A.F. (2017). Stem Cell Therapy in Diabetes Mellitus. In: El-Badri, N. (eds) Advances in Stem Cell Therapy. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-29149-9_2

Download citation

Publish with us

Policies and ethics