Skip to main content

Future Perspectives and Challenges of Fungal Systematics in the Age of Big Data

  • Chapter

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Mycological research, especially research on fungal evolution and ecology, requires a robust and detailed fungal classification and phylogeny to facilitate efficient and informative communication among mycologists as well as for comparative biology relevant to the larger bioscience community. The field of fungal systematics has undergone numerous revisions recently, from early morphological classifications to an integrative taxonomy that is increasingly reliant on molecular phylogeny. These revisions have taken place at a range of taxonomic ranks, fueled by advances surmounting two major challenges, namely, adequate and balanced sampling of genetic markers and taxa and reinterpretation of phylogenetic informativeness of numerous morphological and ecological characters. The Assembling the Fungal Tree of Life (AFTOL) projects reflected a corresponding surge of collaborative effort in fungal molecular phylogeny using PCR and Sanger sequencing. Here we review recent progress in fungal systematics after AFTOL, in the post-Sanger age, and discuss the future fungal systematics that is emerging as a result of the extraordinary volume of data being gathered by high-throughput sequencing. We examine how environmental DNA surveys, sequence-based classification, and phylogenomics and phylotranscriptomics can impact fungal systematics and point out that sequenced fungal genomes could significantly improve multi-marker phylogenetic inference at a range of levels of fungal systematics by facilitating application of phylogenetically informative experimental design. We argue that it is time to integrate fungal systematics, genome-enabled mycology, and other dimensions of fungal research within the framework of evolutionary biology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersen MR, Salazar MP, Schaap PJ, van de Vondervoort PJ, Culley D et al (2011) Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome Res 21:885–897

    Google Scholar 

  • Bass D, Richards TA (2011) Three reasons to re-evaluate fungal diversity ‘on Earth in the ocean’. Fungal Biol Rev 25:159–164

    Article  Google Scholar 

  • Bidartondo MI (2008) Preserving accuracy in GenBank. Science 319:1616

    Article  CAS  PubMed  Google Scholar 

  • Bidartondo MI, Read DJ, Trappe JM, Merckx V, Ligrone R et al (2011) The dawn of symbiosis between plants and fungi. Biol Lett 7:574–577

    Article  PubMed  PubMed Central  Google Scholar 

  • Binder M, Justo A, Riley R, Salamov A, Lopez-Giraldez F et al (2013) Phylogenetic and phylogenomic overview of the Polyporales. Mycologia 105:1350–1373

    Article  CAS  PubMed  Google Scholar 

  • Blackwell M (2011) The fungi: 1, 2, 3 … 5.1 million species? Am J Bot 98:426–438

    Article  PubMed  Google Scholar 

  • Blackwell M, Hibbett DS, Taylor JW, Spatafora JW (2006) Research coordination networks: a phylogeny for kingdom fungi (Deep Hypha). Mycologia 98:829–837

    Article  PubMed  Google Scholar 

  • Blaxter M, Mann J, Chapman T, Thomas F, Whitton C et al (2005) Defining operational taxonomic units using DNA barcode data. Philos Trans R Soc Lond B Biol Sci 360:1935–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breinholt JW, Kawahara AY (2013) Phylotranscriptomics: saturated third codon positions radically influence the estimation of trees based on next-gen data. Genome Biol Evol 5:2082–2092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridge P, Spooner B, Roberts P (2005) The impact of molecular data in fungal systematics. Adv Bot Res 42:33–67

    Article  CAS  Google Scholar 

  • Bruns T, White T, Taylor J (1991) Fungal molecular systematics. Annu Rev Ecol Syst 22:525–564

    Article  Google Scholar 

  • Bruto M, Prigent-Combaret C, Luis P, Moenne-Loccoz Y, Muller D (2014) Frequent, independent transfers of a catabolic gene from bacteria to contrasted filamentous eukaryotes. Proc Biol Sci 281:20140848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao Y, Wu SH, Dai YC (2012) Species clarification of the prize medicinal Ganoderma mushroom “Lingzhi”. Fungal Divers 56:49–62

    Google Scholar 

  • Capella-Gutierrez S, Marcet-Houben M, Gabaldon T (2012) Phylogenomics supports microsporidia as the earliest diverging clade of sequenced fungi. BMC Biol 10:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Capella-Gutierrez S, Kauff F, Gabaldon T (2014) A phylogenomics approach for selecting robust sets of phylogenetic markers. Nucleic Acids Res 42, e54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson A, Justo A, Hibbett DS (2014) Species delimitation in Trametes: a comparison of ITS, RPB1, RPB2 and TEF1 gene phylogenies. Mycologia 106:735–745

    Google Scholar 

  • Cohen-Gihon I, Sharan R, Nussinov R (2011) Processes of fungal proteome evolution and gain of function: gene duplication and domain rearrangement. Phys Biol 8:035009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai YC, Cui BK (2011) Fomitiporia ellipsoidea has the largest fruiting body among the fungi. Fungal Biol 115:813–814

    Google Scholar 

  • de Bertoldi M, Lepidi AA, Nuti MP (1973) Significance of DNA base composition in classification of Humicola and related genera. Trans Br Mycol Soc 60:77–85

    Google Scholar 

  • De Oliveira ML, Mallo D, Posada D (2014) A Bayesian supertree model for genome-wide species tree reconstruction. Syst Biol. doi:10.1093/sysbio/syu082

    Google Scholar 

  • de Queiroz K, Gauthier J (1994) Toward a phylogenetic system of biological nomenclature. Trends Ecol Evol 9:27–31

    Article  PubMed  Google Scholar 

  • Del Olmo-Ruiz M, Arnold AE (2014) Interannual variation and host affiliations of endophytic fungi associated with ferns at La Selva, Costa Rica. Mycologia 106:8–21

    Article  PubMed  Google Scholar 

  • Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6:361–375

    Article  CAS  PubMed  Google Scholar 

  • Du XH, Zhao Q, O’Donnell K, Rooney AP, Yang ZL (2012) Multigene molecular phylogenetics reveals true morels (Morchella) are especially species-rich in China. Fungal Genet Biol 49:455–469

    Google Scholar 

  • Dutilh BE, van Noort V, van der Heijden RT, Boekhout T, Snel B et al (2007) Assessment of phylogenomic and orthology approaches for phylogenetic inference. Bioinformatics 23:815–824

    Article  CAS  PubMed  Google Scholar 

  • Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P et al (2011) The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science 333:762–765

    Article  CAS  PubMed  Google Scholar 

  • Ebersberger I, de Matos SR, Kupczok A, Gube M, Kothe E et al (2012) A consistent phylogenetic backbone for the fungi. Mol Biol Evol 29:1319–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellison CE, Hall C, Kowbel D, Welch J, Brem RB et al (2011) Population genomics and local adaptation in wild isolates of a model microbial eukaryote. Proc Natl Acad Sci USA 108:2831–2836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feau N, Decourcelle T, Husson C, Desprez-Loustau ML, Dutech C (2011) Finding single copy genes out of sequenced genomes for multilocus phylogenetics in non-model fungi. PLoS One 6, e18803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick DA (2012) Horizontal gene transfer in fungi. FEMS Microbiol Lett 329:1–8

    Article  CAS  PubMed  Google Scholar 

  • Floudas D, Binder M, Riley R, Barry K, Blanchette RA et al (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719

    Article  CAS  PubMed  Google Scholar 

  • Galagan JE, Henn MR, Ma LJ, Cuomo CA, Birren B (2005) Genomics of the fungal kingdom: insights into eukaryotic biology. Genome Res 15:1620–1631

    Article  CAS  PubMed  Google Scholar 

  • Geiser DM, Aoki T, Bacon CW, Baker SE, Bhattacharyya MK et al (2013) One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use. Phytopathology 103:400–408

    Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B et al (1996) Life with 6000 genes. Science 274(546):563–567

    Google Scholar 

  • Haag KL, James TY, Pombert JF, Larsson R, Schaer TM et al (2014) Evolution of a morphological novelty occurred before genome compaction in a lineage of extreme parasites. Proc Natl Acad Sci USA 111:15480–15485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heitman J (2007) Sex in fungi: molecular determination and evolutionary implication. In: Heitman J, Kronstad JW, Taylor JW, Casselton LA (eds). ASM Press, Washington, DC

    Google Scholar 

  • Hibbett DS, Taylor JW (2013) Fungal systematics: is a new age of enlightenment at hand? Nat Rev Microbiol 11:129–133

    Article  CAS  PubMed  Google Scholar 

  • Hibbett DS, Nilsson RH, Snyder M, Fonseca M, Costanzo J et al (2005) Automated phylogenetic taxonomy: an example in the homobasidiomycetes (mushroom-forming fungi). Syst Biol 54:660–668

    Article  PubMed  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF et al (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Hibbett DS, Ohman A, Glotzer D, Nuhn M, Kirk PM et al (2011) Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biol Rev 25:38–47

    Article  Google Scholar 

  • Hibbett DS, Stajich JE, Spatafora JW (2013) Toward genome-enabled mycology. Mycologia 105:1339–1349

    Article  PubMed  Google Scholar 

  • Hyde KD, Udayanga D, Manamgoda D, Tedersoo L, Larsson E et al (2013) Incorporating molecular data in fungal systematics: a guide for aspiring researchers. Currt Res Environ Appl Mycol 3:1–32

    Google Scholar 

  • Hyde KD, Nilsson RH, Alias SA, Ariyawansa HA, Blair JE et al (2014) One stop shop: backbones trees for important phytopathogenic genera: I. Fungal Divers 67:21–125

    Article  Google Scholar 

  • Ishii N, Ishida S, Kagami M (2015) PCR primers for assessing community structure of aquatic fungi including Chytridiomycota and Cryptomycota. Fungal Ecol 13:33–43

    Article  Google Scholar 

  • James TY, Berbee ML (2012) No jacket required—new fungal lineage defies dress code: recently described zoosporic fungi lack a cell wall during trophic phase. Bioessays 34:94–102

    Article  CAS  PubMed  Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V et al (2006a) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822

    Article  CAS  PubMed  Google Scholar 

  • James TY, Letcher PM, Longcore JE, Mozley-Standridge SE, Porter D et al (2006b) A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98:860–871

    Article  PubMed  Google Scholar 

  • James TY, Pelin A, Bonen L, Ahrendt S, Sain D et al (2013) Shared signatures of parasitism and phylogenomics unite Cryptomycota and microsporidia. Curr Biol 23:1548–1553

    Google Scholar 

  • Jones MD, Forn I, Gadelha C, Egan MJ, Bass D et al (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–203

    Article  CAS  PubMed  Google Scholar 

  • Karpov SA, Mamkaeva MA, Aleoshin VV, Nassonova E, Lilje O et al (2014) Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia. Front Microbiol 5:112

    PubMed  PubMed Central  Google Scholar 

  • Kauff F, Cox CJ, Lutzoni F (2007) WASABI: an automated sequence processing system for multigene phylogenies. Syst Biol 56:523–531

    Article  CAS  PubMed  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (eds) (2008) Ainsworth and Bisby’s dictionary of the fungi. CAB International, Wallingford

    Google Scholar 

  • Koetschan C, Forster F, Keller A, Schleicher T, Ruderisch B et al (2010) The ITS2 Database III—sequences and structures for phylogeny. Nucleic Acids Res 38:D275–D279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M et al (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277

    Article  PubMed  CAS  Google Scholar 

  • Lehr NA, Wang Z, Li N, Hewitt DA, Lopez-Giraldez F et al (2014) Gene expression differences among three Neurospora species reveal genes required for sexual reproduction in Neurospora crassa. PLoS One 9, e110398

    Google Scholar 

  • Li C, Hofreiter M, Straube N, Corrigan S, Naylor GJ (2013) Capturing protein-coding genes across highly divergent species. Biotechniques 54:321–326

    CAS  PubMed  Google Scholar 

  • Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T et al (2013) Fungal community analysis by high-throughput sequencing of amplified markers—a user’s guide. New Phytol 199:288–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YJ, Hall BD (2004) Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny. Proc Natl Acad Sci USA 101:4507–4512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Raghavan S, Nelesen S, Linder CR, Warnow T (2009) Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science 324:1561–1564

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Warnow TJ, Holder MT, Nelesen SM, Yu J et al (2012) SATe-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees. Syst Biol 61:90–106

    Article  PubMed  Google Scholar 

  • Lopez-Giraldez F, Townsend JP (2011) PhyDesign: an online application for profiling phylogenetic informativeness. BMC Evol Biol 11:152

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopez-Giraldez F, Moeller AH, Townsend JP (2013) Evaluating phylogenetic informativeness as a predictor of phylogenetic signal for metazoan, fungal, and mammalian phylogenomic data sets. Biomed Res Int 2013:621604

    Article  PubMed  PubMed Central  Google Scholar 

  • Losos JB, Arnold SJ, Bejerano G, Brodie ED 3rd, Hibbett D et al (2013) Evolutionary biology for the 21st century. PLoS Biol 11, e1001466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G et al (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91:1446–1480

    Article  PubMed  Google Scholar 

  • Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM et al (2010) Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038

    Article  CAS  PubMed  Google Scholar 

  • Matheny PB, Wang Z, Binder M, Curtis JM, Lim YW et al (2007) Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Mol Phylogenet Evol 43:430–451

    Google Scholar 

  • McLaughlin DJ, Spatafora JW, Esser K (eds) (2014) The Mycota. A comprehensive treatise on fungi as experimental systems for basic and applied research. Springer, Heidelberg

    Google Scholar 

  • McNeill J, Turland NJ (2012) International code of nomenclature for algae, fungi, and plants (Melbourne Code). PREFACE. 154:Ix–Xxii

    Google Scholar 

  • Medina EM, Jones GW, Fitzpatrick DA (2011) Reconstructing the fungal tree of life using phylogenomics and a preliminary investigation of the distribution of yeast prion-like proteins in the fungal kingdom. J Mol Evol 73:116–133

    Article  CAS  PubMed  Google Scholar 

  • Miadlikowska J, Kauff F, Hognabba F, Oliver JC, Molnar K et al (2014) A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Mol Phylogenet Evol 79:132–168

    Article  PubMed  Google Scholar 

  • Moeller AH, Townsend JP (2013) Response to: the relative utility of sequence divergence and phylogenetic informativeness profiling in phylogenetic study design. Mol Phylogenet Evol 66:436

    Article  PubMed  Google Scholar 

  • Money NP (2013) Against the naming of fungi. Fungal Biol 117:463–465

    Article  PubMed  Google Scholar 

  • Morin E, Kohler A, Baker AR, Foulongne-Oriol M, Lombard V et al (2012) Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc Natl Acad Sci USA 109:17501–17506

    Google Scholar 

  • Nagy LG, Ohm RA, Kovacs GM, Floudas D, Riley R et al (2014) Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts. Nat Commun 5:4471

    Article  CAS  PubMed  Google Scholar 

  • Neafsey DE, Barker BM, Sharpton TJ, Stajich JE, Park DJ et al (2010) Population genomic sequencing of Coccidioides fungi reveals recent hybridization and transposon control. Genome Res 20:938–946

    Google Scholar 

  • Nilsson RH, Ryberg M, Sjokvist E, Abarenkov K (2011) Rethinking taxon sampling in the light of environmental sequencing. Cladistics 27:197–203

    Article  Google Scholar 

  • Nilsson RH, Tedersoo L, Abarenkov K, Ryberg M, Kristiansson E et al (2012) Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys 4:37–63

    Article  Google Scholar 

  • Nishant KT, Wei W, Mancera E, Argueso JL, Schlattl A et al (2010) The baker’s yeast diploid genome is remarkably stable in vegetative growth and meiosis. PLoS Genet 6, e1001109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J et al (2012) Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet 44:1060–1065

    Google Scholar 

  • Ortiz-Santana B, Lindner DL, Miettinen O, Justo A, Hibbett DS (2013) A phylogenetic overview of the antrodia clade (Basidiomycota, Polyporales). Mycologia 105:1391–1411

    Article  CAS  PubMed  Google Scholar 

  • Otrosina WJ, Garbelotto M (2010) Heterobasidion occidentale sp. nov. and Heterobasidion irregulare nom. nov.: a disposition of North American Heterobasidion biological species. Fungal Biol 114:16–25

    Google Scholar 

  • Padamsee M, Kumar TK, Riley R, Binder M, Boyd A et al (2012) The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction. Fungal Genet Biol 49:217–226

    Google Scholar 

  • Pante E, Schoelinck C, Puillandre N (2015) From integrative taxonomy to species description: one step beyond. Syst Biol 64:152–160

    Article  CAS  PubMed  Google Scholar 

  • Park B, Park J, Cheong KC, Choi J, Jung K et al (2011) Cyber infrastructure for Fusarium: three integrated platforms supporting strain identification, phylogenetics, comparative genomics and knowledge sharing. Nucleic Acids Res 39:D640–D646

    Google Scholar 

  • Pearson DL, Hamilton AL, Erwin TL (2011) Recovery plan for the endangered taxonomy profession. Bioscience 61:58–63

    Article  Google Scholar 

  • Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G et al (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231

    Google Scholar 

  • Philippe H, Brinkmann H, Lavrov DV, Littlewood DT, Manuel M et al (2011) Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol 9, e1000602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porras-Alfaro A, Liu KL, Kuske CR, Xie G (2014) From genus to phylum: large-subunit and internal transcribed spacer rRNA operon regions show similar classification accuracies influenced by database composition. Appl Environ Microbiol 80:829–840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Porter TM, Schadt CW, Rizvi L, Martin AP, Schmidt SK et al (2008) Widespread occurrence and phylogenetic placement of a soil clone group adds a prominent new branch to the fungal tree of life. Mol Phylogenet Evol 46:635–644

    Article  CAS  PubMed  Google Scholar 

  • Richard F, Bellanger JM, Clowez P, Courtecuisse R, Hansen K et al (2014) True morels (Morchella, Pezizales) of Europe and North America: evolutionary relationships inferred from multilocus data and a unified taxonomy. Mycologia 107:359–382.

    Google Scholar 

  • Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ et al (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437

    Article  CAS  PubMed  Google Scholar 

  • Robert V, Szoke S, Eberhardt U, Cardinali G, Meyer W et al (2011) The quest for a general and reliable fungal DNA barcode. Open Appl Inf J 5(Suppl 1-M6):45–61

    Article  CAS  Google Scholar 

  • Rodriguez-Romero J, Hedtke M, Kastner C, Muller S, Fischer R (2010) Fungi, hidden in soil or up in the air: light makes a difference. Annu Rev Microbiol 64:585–610

    Article  CAS  PubMed  Google Scholar 

  • Rosling A, Cox F, Cruz-Martinez K, Ihrmark K, Grelet GA et al (2011) Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi. Science 333:876–879

    Article  CAS  PubMed  Google Scholar 

  • Rosling A, Timling I, Taylor DL (2013) Distribution and abundance of Archaeorhizomycetes. In: Horwitz A, Mukherjee PK, Mukherijee M, Kubicek CP (eds) Genomics of soil- and plant-associated fungi. Springer, Heidelberg, pp 333–349

    Chapter  Google Scholar 

  • Salichos L, Rokas A (2013) Inferring ancient divergences requires genes with strong phylogenetic signals. Nature 497:327–331

    Article  CAS  PubMed  Google Scholar 

  • Schoch CL, Sung GH, Lopez-Giraldez F, Townsend JP, Miadlikowska J et al (2009a) The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 58:224–239

    Article  CAS  PubMed  Google Scholar 

  • Schoch CL, Wang Z, Townsend JP, Spatafora JW (2009b) Geoglossomycetes cl. nov., Geoglossales ord. nov. and taxa above class rank in the Ascomycota tree of life. Persoonia 22:129–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoch CL, Robbertse B, Robert V, Vu D, Cardinali G et al (2014) Finding needles in haystacks: linking scientific names, reference specimens and molecular data for fungi. Database (Oxford). doi:10.1093/database/bau061

    Google Scholar 

  • Schoustra SE, Debets AJ, Slakhorst M, Hoekstra RF (2007) Mitotic recombination accelerates adaptation in the fungus Aspergillus nidulans. PLoS Genet 3, e68

    Google Scholar 

  • Seifert KA, Rossman AY (2010) How to describe a new fungal species. IMA Fungus 1:109–116

    Article  PubMed  PubMed Central  Google Scholar 

  • Sikhakolli UR, Lopez-Giraldez F, Li N, Common R, Townsend JP et al (2012) Transcriptome analyses during fruiting body formation in Fusarium graminearum and Fusarium verticillioides reflect species life history and ecology. Fungal Genet Biol 49:663–673

    Google Scholar 

  • Slot JC, Rokas A (2011) Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi. Curr Biol 21:134–139

    Article  CAS  PubMed  Google Scholar 

  • Smith ML, Bruhn JN, Anderson JB (1992) The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356:428–431

    Google Scholar 

  • Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM et al (2010) Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330:1543–1546

    Article  CAS  PubMed  Google Scholar 

  • Stajich J, Berbee M, Blackwell M, Hibbett D, James T et al (2009) The fungi. Curr Biol 19:R840–R845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stajich JE, Wilke SK, Ahren D, Au CH, Birren BW et al (2010) Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc Natl Acad Sci USA 107:11889–11894

    Google Scholar 

  • Su Z, Wang Z, Lopez-Giraldez F, Townsend JP (2014) The impact of incorporating molecular evolutionary model into predictions of phylogenetic signal and noise. Front Ecol Evol 2:1–11

    Article  Google Scholar 

  • Taylor JW, Berbee ML (2014) Fungi from PCR to Genomics: the spreading revolution in evolutionary biology. In: Esser K, McLaughlin D, Spatafora J (eds) Mycota VII. A comprehensive treatise on fungi as experimental systems for basic and applied research: systematics and evolution, 2nd edn. Springer, Berlin, pp 1–18

    Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM et al (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32

    Article  CAS  PubMed  Google Scholar 

  • Taylor JW, Turner E, Townsend JP, Dettman JR, Jacobson D (2006) Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom Fungi. Philos Trans R Soc Lond B Biol Sci 361:1947–1963

    Article  PubMed  PubMed Central  Google Scholar 

  • Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS et al (2014) Global diversity and geography of soil fungi. Science 346(6213):1256688

    Article  PubMed  CAS  Google Scholar 

  • Townsend JP (2007) Profiling phylogenetic informativeness. Syst Biol 56:222–231

    Article  CAS  PubMed  Google Scholar 

  • Townsend JP, Lopez-Giraldez F (2010) Optimal selection of gene and ingroup taxon sampling for resolving phylogenetic relationships. Syst Biol 59:446–457

    Article  CAS  PubMed  Google Scholar 

  • Townsend JP, Lopez-Giraldez F, Friedman R (2008) The phylogenetic informativeness of nucleotide and amino acid sequences for reconstructing the vertebrate tree. J Mol Evol 67:437–447

    Article  CAS  PubMed  Google Scholar 

  • Townsend JP, Su Z, Tekle YI (2012) Phylogenetic signal and noise: predicting the power of a data set to resolve phylogeny. Syst Biol 61:835–849

    Article  CAS  PubMed  Google Scholar 

  • van de Vondervoort PJ, Langeveld SM, Visser J, van Peij NN, Pel HJ et al (2007) Identification of a mitotic recombination hotspot on chromosome III of the asexual fungus Aspergillus niger and its possible correlation with [corrected] elevated basal transcription. Curr Genet 52:107–114

    Google Scholar 

  • van der Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  PubMed  CAS  Google Scholar 

  • Vogel KJ, Moran NA (2013) Functional and evolutionary analysis of the genome of an obligate fungal symbiont. Genome Biol Evol 5:891–904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walker DM, Castlebury LA, Rossman AY, White JF Jr (2012) New molecular markers for fungal phylogenetics: two genes for species-level systematics in the Sordariomycetes (Ascomycota). Mol Phylogenet Evol 64:500–512

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Nilsson RH, Lopez-Giraldez F, Zhuang WY, Dai YC et al (2011) Tasting soil fungal diversity with earth tongues: phylogenetic test of SATe alignments for environmental ITS data. PLoS One 6, e19039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wapinski I, Pfeffer A, Friedman N, Regev A (2007) Natural history and evolutionary principles of gene duplication in fungi. Nature 449:54–61

    Article  CAS  PubMed  Google Scholar 

  • Wardle DA, Lindahl BD (2014) Disentangling global soil fungal diversity. Science 346:1052–1053

    Article  CAS  PubMed  Google Scholar 

  • Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E et al (2014) Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci USA 111:E4859–E4868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Will KW, Mishler BD, Wheeler QD (2005) The perils of DNA barcoding and the need for integrative taxonomy. Syst Biol 54:844–851

    Article  PubMed  Google Scholar 

  • Wisecaver JH, Slot JC, Rokas A (2014) The evolution of fungal metabolic pathways. PLoS Genet 10, e1004816

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu F, Yuan Y, Malysheva VF, Du P, Dai YC (2014) Species clarification of the most important and cultivated Auricularia mushroom “Heimuer”: evidence from morphological and molecular data. Phytotaxa 186:241–253

    Google Scholar 

  • Wurzbacher C, Grossart HP (2012) Improved detection and identification of aquatic fungi and chitin in aquatic environments. Mycologia 104:1267–1271

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S et al (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinf 13:134

    Article  CAS  Google Scholar 

  • Zhang LF, Yang ZL, Song DS (2005) A phylogenetic study of commercial Chinese truffles and their allies: taxonomic implications. FEMS Microbiol Lett 245:85–92

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Rossman AY, Seifert K, Bennett JW, Cai G et al (2013) Impacts of the international code of nomenclature for algae, fungi, and plants (Melbourne Code) on the scientific names of plant pathogenic fungi. Online, APSnet Feature: American Phytopathoglogical Society, St. Paul, MN

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng Wang Ph.D. or Jeffrey P. Townsend Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, Z., Nilsson, R.H., James, T.Y., Dai, Y., Townsend, J.P. (2016). Future Perspectives and Challenges of Fungal Systematics in the Age of Big Data. In: Li, DW. (eds) Biology of Microfungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-29137-6_3

Download citation

Publish with us

Policies and ethics