Skip to main content

Fungi in Fermentation and Biotransformation Systems

  • Chapter
Biology of Microfungi

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Microfungi were used to produce products for human consumption, such as cheese and tea, long before the development of bioprocess engineering methods to control fermentations and biotransformations. However, such processes have been substantially improved in the last decades. Mathematical models have been developed to optimise the design and operation of both solid and submerged fermentations, and rheological properties of the broth (influenced by biomass concentration, growth rate, and morphology) have been used to better understand fungal performance in bioreactors. New strategies and bioreactor configurations have also been proposed, including rotating drums for solid-state fermentation, internal-loop airlift reactors, and disposable bag reactors (which allow the growth of shear stress sensitive basidiomycetes). Fungal secondary metabolites have provided important therapeutical agents, since the discovery of penicillin and cyclosporine (effective antibacterial and immunosuppressant drugs, respectively). Furthermore, fungal biotransformations of terpenes, terpenoids, and steroids are nowadays successful biotechnological processes. This chapter aims at reviewing the latest developments in fermentation and biotransformation processes using fungal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albaek MO, Gernaey KV, Hansen MS, Stocks SM (2011) Modeling enzyme production with Aspergillus oryzae in pilot scale vessels with different agitation, aeration, and agitator types. Biotechnol Bioeng 108(8):1828–1840

    Article  CAS  PubMed  Google Scholar 

  • Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39(12):1843–1848

    Article  CAS  Google Scholar 

  • Barrios-González J (2012) Solid-state fermentation: physiology of solid medium, its molecular basis and applications. Process Biochem 47(2):175–185

    Article  Google Scholar 

  • Barrios-González J, Mejýa A (2008) Production of antibiotics and other commercially valuable secondary metabolites. In: Pandey A, Soccol C, Larroche C (eds) Current developments in solid-state fermentation. Springer, New York, pp 302–336

    Chapter  Google Scholar 

  • Bhargav S, Panda BP, Ali M, Javed S (2008) Solid-state fermentation: an overview. Chem Biochem Eng Q 22(1):49–70

    CAS  Google Scholar 

  • Bhargava S, Nandakumar MP, Roy A, Wenger KS, Marten MR (2003) Pulsed feeding during fed-batch fungal fermentation leads to reduced viscosity without detrimentally affecting protein expression. Biotechnol Bioeng 81(3):341–347

    Article  CAS  PubMed  Google Scholar 

  • Bhargava S, Wenger KS, Rane K, Rising V, Marten MR (2005) Effect of cycle time on fungal morphology, broth rheology, and recombinant enzyme productivity during pulsed addition of limiting carbon source. Biotechnol Bioeng 89(5):524–529

    Article  CAS  PubMed  Google Scholar 

  • Bier MCJ, Poletto S, Soccol VT, Soccol CR, Medeiros ABP (2011) Isolation and screening of microorganisms with potential for biotransformation of terpenic substrates. Braz Arch Biol Technol 54(5):1019–1026

    Article  CAS  Google Scholar 

  • Burkert JFD, Maldonado RR, Maugeri F, Rodrigues MI (2005) Comparison of lipase production by Geotrichum candidum in stirring and airlift fermenters. J Chem Technol Biotechnol 80(1):61–67

    Article  Google Scholar 

  • Byndoor MG, Karanth NG, Rao GV (1997) Efficient and versatile design of a tray type solid state fermentation bioreactor. In: Roussos S, Lonsane BK, Raimbault M, Viniegra-Gonzalez G (eds) Advances in solid state fermentation. Springer, Berlin, pp 113–119

    Chapter  Google Scholar 

  • Cañas AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28(6):694–705

    Article  PubMed  Google Scholar 

  • Cannel E, Moo-Young M (1980) Solid-state fermentation systems. Process Biochem 15:24–28

    CAS  Google Scholar 

  • Casciatori FP, Laurentino CL, Taboga SR, Casciatori PA, Thomeo JC (2014) Structural properties of beds packed with agro-industrial solid by-products applicable for solid-state fermentation: experimental data and effects on process performance. Chem Eng J 255:214–224

    Article  CAS  Google Scholar 

  • Chisti Y, Moo-Young M (1994) Slurry bioreactor design for shear-sensitive mycoprotein production. In: Galindo E, Ramírez OT (eds) Advances in bioprocess engineering. Kluwer, Dordrecht, pp 25–28

    Chapter  Google Scholar 

  • Cho EJ, Oh JY, Chang HY, Yun JW (2006) Production of exopolysaccharides by submerged mycelial culture of a mushroom Tremella fuciformis. J Biotechnol 127(1):129–140

    Article  CAS  PubMed  Google Scholar 

  • Christakopoulos P, Macris BJ, Kekos D (1989) Direct fermentation of cellulose to ethanol by Fusarium oxysporum. Enzyme Microb Technol 11(4):236–239

    Google Scholar 

  • Coradin JH, Braun A, Viccini G, de Lima Luz LF Jr, Krieger N, Mitchell DA (2011) A three-dimensional discrete lattice-based system for modeling the growth of aerial hyphae of filamentous fungi on solid surfaces: a tool for investigating micro-scale phenomena in solid-state fermentation. Biochem Eng J 54(3):164–171

    Article  CAS  Google Scholar 

  • Couto SR, Sanromán MÁ (2006) Application of solid-state fermentation to food industry—a review. J Food Eng 76(3):291–302

    Article  CAS  Google Scholar 

  • Couto SR, Toca-Herrera JL (2007) Laccase production at reactor scale by filamentous fungi. Biotechnol Adv 25(6):558–569

    Article  CAS  PubMed  Google Scholar 

  • de Carvalho CCCR (2009) Biotransformation of terpenes by fungi. In: Rai M (ed) Advances in fungal biotechnology. I.K. International Publishing House Pvt. Ltd., New Delhi, pp 253–267

    Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2006) Biotransformation of terpenes. Biotechnol Adv 24(2):134–142

    Google Scholar 

  • Debbab A, Aly AH, Lin WH, Proksch P (2010) Bioactive compounds from marine bacteria and fungi. J Microbial Biotechnol 3(5):544–563

    Article  CAS  Google Scholar 

  • Demyttenaere J, De Kimpe N (2001) Biotransformation of terpenes by fungi: study of the pathways involved. J Mol Catal B: Enzym 11(4–6):265–270

    Article  CAS  Google Scholar 

  • Diaz AB, de Ory I, Caro I, Blandino A (2009) Solid state fermentation in a rotating drum bioreactor for the production of hydrolytic enzymes. In: Pierucci S (ed) Icheap-9: 9th international conference on chemical and process engineering, Pts 1–3, vol 17. Chemical Engineering Transactions, pp 1041–46

    Google Scholar 

  • Doran PM (1995) Bioprocess engineering principles. Academic, London

    Google Scholar 

  • etc group (2013) Vanilla and synthetic biology—a case study. etc group. http://www.etcgroup.org/sites/www.etcgroup.org/files/Vanilla_SynBio_case_study_Oct2013.pdf. Accessed 10 Jan 2015

  • evolva. http://www.evolva.com/products/vanilla#sthash.YHCPrTwx.dpuf. Accessed 10 Jan 2015

  • Farooq A, Tahara S (2000) Biotransformation of two cytotoxic terpenes, alpha-santonin and sclareol by Botrytis cinerea. Zeitschrift Fur Naturforschung C-a J Biosci 55(9–10):713–717

    CAS  Google Scholar 

  • Gabelle JC, Jourdier E, Licht RB, Ben Chaabane F, Henaut I, Morchain J, Augier F (2012) Impact of rheology on the mass transfer coefficient during the growth phase of Trichoderma reesei in stirred bioreactors. Chem Eng Sci 75:408–417

    Article  CAS  Google Scholar 

  • Garcia-Carnelli C, Rodriguez P, Heinzen H, Menendez F (2014) Influence of culture conditions on the biotransformation of (+)-limonene by Aspergillus niger. Zeitschrift Fur Naturforschung Section C-a J Biosci 69(1–2):61–67

    Google Scholar 

  • Gibbs PA, Seviour RJ, Schmid F (2000) Growth of filamentous fungi in submerged culture: problems and possible solutions. Crit Rev Biotechnol 20(1):17–48

    Article  CAS  PubMed  Google Scholar 

  • Goldrick S, Ştefan A, Lovett D, Montague G, Lennox B (2015) The development of an industrial-scale fed-batch fermentation simulation. J Biotechnol 193:70–82

    Article  CAS  PubMed  Google Scholar 

  • Graminha EBN, Gonçalves AZL, Pirota RDPB, Balsalobre MAA, Da Silva R, Gomes E (2008) Enzyme production by solid-state fermentation: application to animal nutrition. Anim Feed Sci Technol 144(1–2):1–22

    Article  CAS  Google Scholar 

  • Gray SN (1998) Fungi as potential bioremediation agents in soil contaminated with heavy or radioactive metals. Biochem Soc Trans 26(4):666–670

    Article  CAS  PubMed  Google Scholar 

  • Hansen EH, Møller BL, Kock GR, Bünner CM, Kristensen C, Jensen OR, Okkels FT, Olsen CE, Motawia MS, Hansen J (2009) De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae). Appl Environ Microbiol 75(9):2765–2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heo J-H, Ananin V, Park J-S, Lee C-R, Moon J-O, Kwon O, Kang H-A, Kim C, Rhee S (2004) Impeller types and feeding modes influence the morphology and protein expression in the submerged culture of Aspergillus oryzae. Biotechnol Bioprocess Eng 9(3):184–190

    Article  CAS  Google Scholar 

  • Hevekerl A, Kuenz A, Vorlop K-D (2014) Filamentous fungi in microtiter plates—an easy way to optimize itaconic acid production with Aspergillus terreus. Appl Microbiol Biotechnol 98(16):6983–6989

    Google Scholar 

  • Jonczyk P, Takenberg M, Hartwig S, Beutel S, Berger RG, Scheper T (2013) Cultivation of shear stress sensitive microorganisms in disposable bag reactor systems. J Biotechnol 167(4):370–376

    Article  CAS  PubMed  Google Scholar 

  • Kalogeris E, Iniotaki F, Topakas E, Christakopoulos P, Kekos D, Macris BJ (2003) Performance of an intermittent agitation rotating drum type bioreactor for solid-state fermentation of wheat straw. Bioresour Technol 86(3):207–213

    Article  CAS  PubMed  Google Scholar 

  • Kang X, Wang H, Wang Y, Harvey LM, McNeil B (2001) Hydrodynamic characteristics and mixing behaviour of Sclerotium glucanicum culture fluids in an airlift reactor with an internal loop used for scleroglucan production. J Ind Microbiol Biotechnol 27(4):208–214

    Article  CAS  PubMed  Google Scholar 

  • Karimi K, Zamani A (2013) Mucor indicus: biology and industrial application perspectives: a review. Biotechnol Adv 31(4):466–481

    Article  CAS  PubMed  Google Scholar 

  • Karimi K, Emtiazi G, Taherzadeh MJ (2006) Production of ethanol and mycelial biomass from rice straw hemicellulose hydrolyzate by Mucor indicus. Process Biochem 41(3):653–658

    Article  CAS  Google Scholar 

  • Kelly S, Grimm LH, Bendig C, Hempel DC, Krull R (2006) Effects of fluid dynamic induced shear stress on fungal growth and morphology. Process Biochem 41(10):2113–2117

    Article  CAS  Google Scholar 

  • Kennes C, Veiga MC (2004) Fungal biocatalysts in the biofiltration of VOC-polluted air. J Biotechnol 113(1–3):305–319

    Article  CAS  PubMed  Google Scholar 

  • Krings U, Berger RG (1998) Biotechnological production of flavours and fragrances. Appl Microbiol Biotechnol 49(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Lange L (2010) The importance of fungi for a more sustainable future on our planet. Fungal Biol Rev 24(3–4):90–92

    Article  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7(3):139–153

    Article  CAS  Google Scholar 

  • Li ZJ, Shukla V, Wenger KS, Fordyce AP, Pedersen AG, Marten MR (2002) Effects of increased impeller power in a production-scale Aspergillus oryzae fermentation. Biotechnol Prog 18(3):437–444

    Article  CAS  PubMed  Google Scholar 

  • Linde T, Hansen NB, Lübeck M, Lübeck PS (2014) Fermentation in 24-well plates is an efficient screening platform for filamentous fungi. Lett Appl Microbiol 59(2):224–230

    Article  CAS  PubMed  Google Scholar 

  • Lindmark-Henriksson M, Isaksson D, Vanek T, Valterova I, Hogberg HE, Sjodin K (2004) Transformation of terpenes using a Picea abies suspension culture. J Biotechnol 107(2):173–184

    Article  CAS  PubMed  Google Scholar 

  • Liu CQ, Chen QH, Tang B, Ruan H, He GQ (2007) Response surface methodology for optimizing the fermentation medium of alpha-galactosidase in solid-state fermentation. Lett Appl Microbiol 45(2):206–212

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Liu J, Li J, He H, Peng S, Li C, Chen Y (2013) Removal of H2S by co-immobilized bacteria and fungi biocatalysts in a bio-trickling filter. Process Saf Environ Prot 91(1–2):145–152

    Article  CAS  Google Scholar 

  • Lonsane BK, Ghildyal NP, Budiatman S, Ramakrishna SV (1985) Engineering aspects of solid state fermentation. Enzyme Microb Technol 7(6):258–265

    Article  CAS  Google Scholar 

  • Madyastha KM, Murthy N (1988) Regiospecific hydroxylation of acyclic monoterpene alcohols by Aspergillus niger. Tetrahedron Lett 29(5):579–580

    Article  CAS  Google Scholar 

  • Mannan S, Fakhru’l-Razi A, Alam MZ (2005) Use of fungi to improve bioconversion of activated sludge. Water Res 39(13):2935–2943

    Article  CAS  PubMed  Google Scholar 

  • Mannan S, Fakhru’l-Razi A, Alam MZ (2007) Optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum, using response surface methodology. J Environ Sci 19(1):23–28

    Article  CAS  Google Scholar 

  • Mariano G-R, Richard A, Claude BJ, Sergio R (1995) A mathematical model for solid state fermentation of mycelial fungi on inert support. Chem Eng J Bioch Eng 60(1–3):189–198

    Article  Google Scholar 

  • McCook KP, Chen ARM, Reynolds WF, Reese PB (2012) The potential of Cyathus africanus for transformation of terpene substrates. Phytochemistry 82:61–66

    Article  CAS  PubMed  Google Scholar 

  • Michelin M, Polizeli MLTM, da Silva DP, Ruzene DS, Vicente AA, Jorge JA, Terenzi HF, Teixeira JA (2011) Production of xylanolytic enzymes by Aspergillus terricola in stirred tank and airlift tower loop bioreactors. J Ind Microbiol Biotechnol 38(12):1979–1984

    Article  CAS  PubMed  Google Scholar 

  • Michelin M, de Oliveira Mota AM, Teixeira de Moraes Polizeli ML, da Silva DP, Vicente AA, Teixeira JA (2013) Influence of volumetric oxygen transfer coefficient (k(L)a) on xylanases batch production by Aspergillus niger van Tieghem in stirred tank and internal-loop airlift bioreactors. Biochem Eng J 80:19–26

    Google Scholar 

  • Millati R, Karimi K, Edebo L, Niklasson C, Taherzadeh MJ (2008) Ethanol production from xylose and wood hydrolyzate by Mucor indicus at different aeration rates. BioResources 3(4):1020–1029

    CAS  Google Scholar 

  • Mitchell DA, von Meien OF, Krieger N, Dalsenter FDH (2004) A review of recent developments in modeling of microbial growth kinetics and intraparticle phenomena in solid-state fermentation. Biochem Eng J 17(1):15–26

    Article  CAS  Google Scholar 

  • More TT, Yan S, Tyagi RD, Surampalli RY (2010) Potential use of filamentous fungi for wastewater sludge treatment. Bioresour Technol 101(20):7691–7700

    Article  CAS  PubMed  Google Scholar 

  • Ni H, Chen F, Jiang ZD, Cai MY, Yang YF, Xiao AF, Cai HN (2015) Biotransformation of tea catechins using Aspergillus niger tannase prepared by solid state fermentation on tea byproduct. LWT—Food Sci Technol 60(2):1206–1213

    Google Scholar 

  • Oboirien BO, Ojumu TV, Obayopo SO (2013) Fungi solubilisation of low rank coal: performances of stirred tank, fluidised bed and packed bed reactors. Fuel Process Technol 106:295–302

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: I-bioprocesses and products. Process Biochem 35(10):1153–1169

    Article  CAS  Google Scholar 

  • Papavizas GC, Dunn MT, Lewis JA, Beagle-Ristaino J (1984) Liquid fermentation technology for experimental production of biocontrol fungi. Phytopathology 74(10):1171–1175

    Article  CAS  Google Scholar 

  • Pérez-Guerra N, Torrado-Agrasar A, López-Macias C, Pastrana L (2003) Main characteristics and applications of solid substrate fermentation. Electron J Environ Agric Food Chem 2(3):343–350

    Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57(1–2):20–33

    CAS  PubMed  Google Scholar 

  • Posch AE, Herwig C (2014) Physiological description of multivariate interdependencies between process parameters, morphology and physiology during fed-batch penicillin production. Biotechnol Prog 30(3):689–699

    Article  CAS  PubMed  Google Scholar 

  • Posch AE, Herwig C, Spadiut O (2013) Science-based bioprocess design for filamentous fungi. Trends Biotechnol 31(1):37–44

    Article  CAS  PubMed  Google Scholar 

  • Potin O, Rafin C, Veignie E (2004) Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil. Int Biodeter Biodegr 54(1):45–52

    Article  CAS  Google Scholar 

  • Rahardjo YSP, Tramper J, Rinzema A (2006) Modeling conversion and transport phenomena in solid-state fermentation: a review and perspectives. Biotechnol Adv 24(2):161–179

    Article  CAS  PubMed  Google Scholar 

  • Ranjan AP (2008) Variation in mycelial growth and morphology of Aspergillus niger with changes in shear stress. Res J Biotechnol 3(1):22–26

    Google Scholar 

  • Rodrigues C, de Souza Vandenberghe L, Teodoro J, Pandey A, Soccol C (2009) Improvement on citric acid production in solid-state fermentation by Aspergillus niger LPB BC mutant using citric pulp. Appl Biochem Biotechnol 158(1):72–87

    Article  CAS  PubMed  Google Scholar 

  • Rosales E, Rodríguez Couto S, Sanromán MA (2007) Increased laccase production by Trametes hirsuta grown on ground orange peelings. Enzyme Microb Technol 40(5):1286–1290

    Article  CAS  Google Scholar 

  • Rosazza JPN, Huang Z, Dostal L, Volm T, Rousseau B (1995) Review: biocatalytic transformations of ferulic acid—an abundant aromatic natural product. J Ind Microbiol 15(6):457–471

    Article  CAS  PubMed  Google Scholar 

  • Rueda MGM, Guerrini A, Giovannini PP, Medici A, Grandini A, Sacchetti G, Pedrini P (2013) Biotransformations of terpenes by fungi from Amazonian citrus plants. Chem Biodivers 10(10):1909–1919

    Article  Google Scholar 

  • Ruiz HA, Rodríguez-Jasso RM, Rodríguez R, Contreras-Esquivel JC, Aguilar CN (2012) Pectinase production from lemon peel pomace as support and carbon source in solid-state fermentation column-tray bioreactor. Biochem Eng J 65:90–95

    Article  CAS  Google Scholar 

  • Ryan DR, Leukes WD, Burton SG (2005) Fungal bioremediation of phenolic wastewaters in an airlift reactor. Biotechnol Prog 21(4):1068–1074

    Article  CAS  PubMed  Google Scholar 

  • Senthilkumar SR, Ashokkumar B, Chandra Raj K, Gunasekaran P (2005) Optimization of medium composition for alkali-stable xylanase production by Aspergillus fischeri Fxn 1 in solid-state fermentation using central composite rotary design. Bioresour Technol 96(12):1380–1386

    Article  CAS  PubMed  Google Scholar 

  • Soetaert W, Vandamme EJ (2010) Industrial biotechnology: sustainable growth and economic success. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Solvay SA (2013) Annual Report 2013. Solvay SA. http://www.solvay.cn/en/binaries/2013-annual-report-EN-164627.pdf. Accessed 10 Jan 2015

  • Thadathil N, Velappan SP (2014) Recent developments in chitosanase research and its biotechnological applications: a review. Food Chem 150:392–399

    Article  CAS  PubMed  Google Scholar 

  • Thomas L, Larroche C, Pandey A (2013) Current developments in solid-state fermentation. Biochem Eng J 81:146–161

    Article  CAS  Google Scholar 

  • Topakas E, Kalogeris E, Kekos D, Macris BJ, Christakopoulos P (2003) Bioconversion of ferulic acid into vanillic acid by the thermophilic fungus Sporotrichum thermophile. LWT—Food Sci Technol 36(6):561–565

    Google Scholar 

  • Trytek M, Fiedurek J, Skowronek M (2009) Biotransformation of (R)-(+)-limonene by the psychrotrophic fungus Mortierella minutissima in H2O2-oxygenated culture. Food Technol Biotechnol 47(2):131–136

    CAS  Google Scholar 

  • Um BH, Hanley TR (2008) High-solid enzymatic hydrolysis and fermentation of solka floc into ethanol. J Microbiol Biotechnol 18(7):1257–1265

    CAS  PubMed  Google Scholar 

  • Viniegra-Gonzàlez G (1997) Solid state fermentation: definition, characteristics, limitations and monitoring. In: Roussos S, Lonsane BK, Raimbault M, Viniegra-Gonzalez G (eds) Advances in solid state fermentation. Springer, Berlin, pp 5–22

    Chapter  Google Scholar 

  • Viniegra-Gonzalez G, Favela-Torres E, Aguilar CN, Romero-Gomez SD, Diaz-Godinez G, Augur C (2003) Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem Eng J 13(2–3):157–167

    Article  CAS  Google Scholar 

  • Vu VH, Pham TA, Kim K (2010) Improvement of fungal strain by repeated and sequential mutagenesis and optimization of solid state fermentation for the hyper-production of raw-starch-digesting enzyme. J Microbiol Biotechnol 20(4):718–726

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Tan T-K, Tan GK, Connolly JD, Harrison LJ (2009) Microbial transformation of the sesquiterpenoid (−)-maaliol by Mucor plumbeus. Tetrahedron 65(29–30):5680–5683

    Article  CAS  Google Scholar 

  • Wang KW, Wang SW, Wu B, Wei JG (2014) Bioactive natural compounds from the mangrove endophytic fungi. Mini-Rev Med Chem 14(4):370–391

    Article  CAS  PubMed  Google Scholar 

  • Wong Y, Saw H, Janaun J, Krishnaiah K, Prabhakar A (2011) Solid-state fermentation of palm kernel cake with Aspergillus flavus in laterally aerated moving bed bioreactor. Appl Biochem Biotechnol 164(2):170–182

    Article  CAS  PubMed  Google Scholar 

  • Xu CP, Kim SW, Hwang HJ, Yun JW (2006) Production of exopolysaccharides by submerged culture of an enthomopathogenic fungus, Paecilomyces tenuipes C240 in stirred-tank and airlift reactors. Bioresour Technol 97(5):770–777

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZY, Jin B, Kelly JM (2008) Production of L(+)-lactic acid using acid-adapted precultures of Rhizopus arrhizus in a stirred tank reactor. Appl Biochem Biotechnol 149(3):265–276

    Article  CAS  PubMed  Google Scholar 

  • Zhdanova NN, Zakharchenko VA, Vember VV, Nakonechnaya LT (2000) Fungi from Chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycol Res 104(12):1421–1426

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges Fundação para a Ciência e a Tecnologia, I.P. (FCT), Portugal, for the exploratory project and financial support under program “Investigador FCT 2013” (IF/01203/2013/CP1163/CT0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla C. C. R. de Carvalho Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Carvalho, C.C.C.R. (2016). Fungi in Fermentation and Biotransformation Systems. In: Li, DW. (eds) Biology of Microfungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-29137-6_21

Download citation

Publish with us

Policies and ethics