Skip to main content

Resource Allocation Mechanisms and Time Constraint Propagation Techniques in Fuzzy Workflow Nets

  • Conference paper
  • First Online:
Book cover Enterprise Information Systems (ICEIS 2015)

Abstract

The main objective behind Workflow systems is to support the definition, execution and control of Workflow processes. A Workflow process defines a set of activities and the specific order in which they should be executed, in order to reach a common objective. Therefore, it is important to manage in the best possible way time and resources. The proposal of this work is to express in a more realistic way the resource allocation mechanisms when human behavior is considered in Workflow activities. In order to accomplish this, fuzzy sets delimited by possibility distributions will be associated with the Petri net models that represent human type resource allocation mechanisms. Additionally, the duration of activities that appear on the routes (control structure) of the Workflow process, will be represented by fuzzy time intervals. To define the execution of activities belongings to minimum and maximum intervals, a time constraint propagation mechanism is proposed. New firing rules based on a joint possibility distribution will then be defined.

L.P. de Rezende—Scholarship CAPES - Proc. \(n^{\circ }\) 99999.001925/2015-06.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aalst, W.M.P., Hee, K.: Workflow Management: Models, Methods, and Systems. MIT Press, Cambridge (2004)

    Google Scholar 

  2. Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  3. Hee, K., Sidorova, N., Voorhoeve, M.: Fundam. Inf. 71(2–3), 243–257 (2006)

    MATH  Google Scholar 

  4. Martos-Salgado, M., Rosa-Velardo, F.: Dynamic soundness in resource-constrained workflow nets. In: Bruni, R., Dingel, J. (eds.) FORTE 2011 and FMOODS 2011. LNCS, vol. 6722, pp. 259–273. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Wang, J., Li, D.: Resource oriented workflow nets and workflow resource requirement analysis. Int. J. Softw. Eng. Knowl. Eng. 23(5), 677–694 (2013)

    Article  Google Scholar 

  6. Ling, S., Schmidt, H.: Time petri nets for workflow modelling and analysis. In: 2000 IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 3039–3044. IEEE (2000)

    Google Scholar 

  7. Kotb, Y.T., Badreddin, E.: Synchronization among activities in a workflow using extended workflow petri nets. In: CEC, pp. 548–551. IEEE Computer Society (2005)

    Google Scholar 

  8. Wang, J., Tepfenhart, W.M., Rosca, D.: Emergency response workflow resource requirements modeling and analysis. IEEE Trans. Syst. Man Cybern. Part C 39(3), 270–283 (2009)

    Article  Google Scholar 

  9. Adogla, E.G., Collins, J.W.: Managing resource dependent workflows. US Patent 8,738,775, 27 May 2014

    Google Scholar 

  10. He, L., Chaudhary, N., Jarvis, S.A.: Developing security-aware resource management strategies for workflows. Future Gener. Comput. Syst. 38, 61–68 (2014)

    Article  Google Scholar 

  11. Deng, N., Zhu, X.D., Liu, Y.N., Li, Y.P., Chen, Y.: Time management model of workflow based on time axis. Appl. Mech. Mater. 442, 458–465 (2014)

    Article  Google Scholar 

  12. Guo, X., Ge, J., Zhou, Y., Hu, H., Yao, F., Li, C., Hu, H.: Dynamically predicting the deadlines in time-constrained workflows. In: Huang, Z., Liu, C., He, J., Huang, G. (eds.) WISE Workshops 2013. LNCS, vol. 8182, pp. 120–132. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  13. Lee, D.Y., DiCesare, F.: Scheduling flexible manufacturing systems using petri nets and heuristic search. IEEE Trans. Robot. Autom. 10(2), 123–132 (1994)

    Article  Google Scholar 

  14. Ling, S., Schmidt, H.: Time petri nets for workflow modelling and analysis. In: 2000 IEEE International Conference on Systems, Man, and Cybernetics, vol. 4, pp. 3039–3044. IEEE (2000)

    Google Scholar 

  15. Zhu, D.S., Rong, T.J., Dong, L.G.: An extended time workflow model based on twf-net and its application. J. Comput. Res. Dev. 4, 002 (2003)

    Google Scholar 

  16. Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)

    Book  MATH  Google Scholar 

  17. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  18. Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall Inc., Upper Saddle River (1995)

    MATH  Google Scholar 

  19. Cardoso, J., Valette, R., Dubois, D.: Possibilistic petri nets. IEEE Trans. Syst. Man Cybern. Part B 29(5), 573–582 (1999)

    Article  Google Scholar 

  20. Dubois, D., Prade, H.: Processing fuzzy temporal knowledge. IEEE Syst. Man Cybern. 19, 729–744 (1989)

    Article  MathSciNet  Google Scholar 

  21. David, R., Alla, H.: Discrete, Continuous, and Hybrid Petri Nets, 2nd edn. Springer, Heidelberg (2010)

    Book  Google Scholar 

  22. Julia, S., Oliveira, F.F., Valette, R.: Real time scheduling of workflow management systems based on a p-time petri net model with hybrid resources. Simul. Model. Pract. Theor. 16(4), 462–482 (2008)

    Article  Google Scholar 

  23. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)

    Article  Google Scholar 

  24. Gondran, M., Minoux, M., Vajda, S.: Graphs and Algorithms. Wiley, New York (1984)

    MATH  Google Scholar 

  25. Julia, S., Valette, R.: Real time scheduling of batch systems. Simul. Pract. Theor. 8(5), 307319 (2000)

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank CAPES(Coordenação de Aperfei-çoamento de Pessoal de Nível Superior), FAPEMIG (Fundação de Amparo a Pesquisa do Estado de Minas Gerais) and CNPq (National Counsel of Technological and Scientific Development) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leiliane Pereira de Rezende .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

de Freitas, J.C.J., Julia, S., de Rezende, L.P. (2015). Resource Allocation Mechanisms and Time Constraint Propagation Techniques in Fuzzy Workflow Nets. In: Hammoudi, S., Maciaszek, L., Teniente, E., Camp, O., Cordeiro, J. (eds) Enterprise Information Systems. ICEIS 2015. Lecture Notes in Business Information Processing, vol 241. Springer, Cham. https://doi.org/10.1007/978-3-319-29133-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29133-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29132-1

  • Online ISBN: 978-3-319-29133-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics