Skip to main content

Assessment of Subfilter Scalar Dissipation Rate and Mixture Fraction Variance Models

  • Conference paper
  • First Online:
Progress in Turbulence VI

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 165))

  • 1048 Accesses

Abstract

The Flamelet/Progress-Variable (FPV) model is able to describe diffusion flames in the flamelet regime by parametrising the chemical problem as a function of a limited number of variables, namely the mixture fraction Z and the progress-variable c. The aim of the present paper is to study the effect of different mixture fraction variance \(Z_v\) and subgrid scalar dissipation rate \(\chi _{sgs}\) models in the prediction of turbulent combustion phenomena, particularly for diffusion flames. Both parameters model scalar mixing at the subgrid level, which in turn controls the combustion process. Four different models are compared: an Equilibrium model, a mixture fraction Variance Transport Equation (VTE) model, a Transport Equation for the Second moment of the mixture fraction (STE), and a Scalar Dissipation Rate transport equation (SDR-TE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balarac, G., Pitsch, H., Raman, V.: Development of a dynamic model for the subfilter scalar variance using the concept of optimal estimators. Phys. Fluids 20, 035,114 (2008)

    Article  MATH  Google Scholar 

  2. Ihme, M., Pitsch, H.: Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model 2. Application in LES of Sandia flames D and E. Combust. Flame 155, 90–107 (2008)

    Article  MATH  Google Scholar 

  3. Kaul, C., Raman, V., Knudsen, E., Richardson, E., Chen, J.: Large eddy simulation of a lifted ethylene flame using a dynamic nonequilibrium model for subfilter scalar variance and dissipation rate. Proc. Combust. Inst. 34, 1289–1297 (2013)

    Article  Google Scholar 

  4. Knudsen, E., Richardson, E., Doran, E., Pitsch, N., Chen, J.: Modeling scalar dissipation and scalar variance in large eddy simulation: Algebraic and transport equation closures. Phys. Fluids 24, 055,103 (2012)

    Google Scholar 

  5. Lehmkuhl, O., Pérez Segarra, C., Borrell, R., Soria, M., Oliva, A.: Termofluids: a new parallel unstructured CFD code for the simulation of turbulent industrial problems on low cost PC cluster. Proc. Par. CFD Conf. pp. 1–8 (2007)

    Google Scholar 

  6. Meier, W., Barlow, R., Chen, Y.L., Chen, J.Y.: Raman/Rayleigh/LIF measurements in a turbulent CH4/H2/N2 jet diffusion flame: experimental techniques and turbulence-chemistry interaction. Combust. Flame 123, 326–343 (2000)

    Article  Google Scholar 

  7. Nicoud, F., Ducros, F.: Subgrid-scale stress modeling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62, 183–200 (1999)

    Article  MATH  Google Scholar 

  8. Pierce, C., Moin, P.: A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys. Fluids 10, 3041 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pierce, C., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author thankfully acknowledges the computer resources, technical expertise and assistance provided by the Barcelona Supercomputing Center—Centro Nacional de Supercomputación.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Oliva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ventosa-Molina, J., Lehmkuhl, O., Pérez-Segarra, C.D., Oliva, A. (2016). Assessment of Subfilter Scalar Dissipation Rate and Mixture Fraction Variance Models. In: Peinke, J., Kampers, G., Oberlack, M., Wacławczyk, M., Talamelli, A. (eds) Progress in Turbulence VI. Springer Proceedings in Physics, vol 165. Springer, Cham. https://doi.org/10.1007/978-3-319-29130-7_12

Download citation

Publish with us

Policies and ethics