Skip to main content

Microbiology in the Low-Resource Environment

  • Chapter
  • First Online:
Orthopaedic Trauma in the Austere Environment
  • 826 Accesses

Abstract

In resource-limited settings, trauma-related infections are often avoidable, but only a balanced approach between appropriate pharmacological treatment and a meticulous surgical technique will prevent them. Infection must be considered a clinical event modulated by microbe-related (toxins, enzymes, virulence) and host-related risk factors (poor hygiene, malnutrition, impaired immunity). Mechanisms of injury and the amount of transferred energy are strongly related to the occurrence of infections. The first contamination of a wound, usually by Clostridia and β-hemolytic streptococcus, is followed by a self-contamination from the skin, gastrointestinal flora, and by hospital acquired infection, therefore emphasizing the role of hygiene and environmental control measures. The organisms contaminating an open fracture on presentation do not necessarily represent the microbes that will eventually cause infection, mostly triggered by multiple drug-resistant nosocomial bacteria. The utility of tissue cultures is controversial. Severe acute post-traumatic infections, such as gas gangrene, tetanus, necrotizing fasciitis, and myonecrosis, are considered more in details. Antimicrobial cover should be considered an adjunct to a proper wound care and never a solution for poor surgical management. Antibiotic coverage should be given as soon as possible, but there is no clear evidence about how long it should be administered and which is the best antibiotic. A realistic approach in austere environment is likely to be an immediate delivery of penicillin or cefazolin as soon as possible after trauma, with Gram-negative coverage in the presence of major wounds, or of a delay more than 72 h. Preparation to surgery, wound irrigation, and dressing play an important role in the occurrence of infections. Common systemic infections in developing countries, like HIV, hepatitis B and C, and tuberculosis, and their relation to trauma are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haynes AB, Weiser TG, Berry WR, et al. A surgical safety checklist to reduce morbidity and mortality in a global population. N Engl J Med. 2009;360:491–9.

    Article  CAS  PubMed  Google Scholar 

  2. Allegranzi B, Bagheri Nejad S, et al. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet. 2011;377:228–41.

    Article  PubMed  Google Scholar 

  3. Anderson DJ, Kaye KS, Classen D, et al. Strategies to prevent surgical site infections in acute care hospitals. Infect Control Hosp Epidemiol. 2008;29 Suppl 1:S51–61.

    PubMed  Google Scholar 

  4. Antimicrobial prophylaxis for surgery. Treat Guidel Med Lett. 2009;7:47–52.

    Google Scholar 

  5. Scottish Intercollegiate Guidelines Network. Antibiotic prophylaxis in surgery. www.sign.ac.uk/pdf/sign104.pdf. Accessed 30 Jul 2009.

  6. Mangram AJ, Horan TC, Pearson ML, et al. Guideline for prevention of surgical site infection. Infect Control Hosp Epidemiol. 1999;20:250–78.

    Article  CAS  PubMed  Google Scholar 

  7. Prokusky L. Treatment of acute infection. J Am Acad Orthop Surg. 2006;14:S101–4.

    Article  Google Scholar 

  8. Giannou C, Baldan M. Infections in war wounds. In: Giannou C, Baldan M, editors. War surgery-volume 1. Geneva: International Committee of the Red Cross; 2009. p. 253–66.

    Google Scholar 

  9. Coupland RM. War wounds of bones and external fixation. Injury. 1994;25:211–7.

    Article  CAS  PubMed  Google Scholar 

  10. Dougherty SH, Fiegel VD, Nelson RD, et al. Effects of soil infection potentiating factors on neutrophils in vitro. Am J Surg. 1985;150:306–11.

    Article  CAS  PubMed  Google Scholar 

  11. Haury BB, Rodeheaver GT, Pettry D, et al. Inhibition of nonspecific defenses by soil infection potentiating factors. Surg Gynecol Obstet. 1977;144:19–24.

    CAS  PubMed  Google Scholar 

  12. Eardley WGP, Brown KV, Bonner TJ, et al. Infection in conflict wounded. Philos Trans R Soc B. 2011;366:204–18.

    Article  CAS  Google Scholar 

  13. Tong MJ. Septic complications of war wounds. JAMA. 1972;219:1044–7.

    Article  CAS  PubMed  Google Scholar 

  14. Murray CK. Infectious disease complications of combat-related injuries. Crit Care Med. 2008;36 Suppl 7:S358–64.

    Article  PubMed  Google Scholar 

  15. Zapor MJ, Moran KA. Infectious diseases during wartime. Curr Opin Infect Dis. 2005;18:395–9.

    Article  PubMed  Google Scholar 

  16. Sonshine DB, Caldwell A, Gosselin RA, et al. Critically assessing the Haiti earthquake response and the barriers to quality orthopaedic care. Clin Orthop Relat Res. 2012;470:2895–904. doi:10.1007/s11999-012-2333-4.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang HY, Duan X, Chen Y, et al. Microbiologic study on the pathogens isolated from wound culture among orthopaedic patients after Wenchuan. Zhongguo Gu Shang. 2009;22:910–2. Chineese.

    PubMed  Google Scholar 

  18. Hill PF, Edwards DP, Bowyer GW. Small fragment wounds: biophysics, pathophysiology and principles of management. J R Army Med Corps. 2001;147:41–51.

    Article  CAS  PubMed  Google Scholar 

  19. Ritchie AJ, Harvey CF. Experience in low velocity gunshot injuries: a more conservative approach in selected cases. J R Coll Surg Edinb. 1990;35:302–4.

    CAS  PubMed  Google Scholar 

  20. Byrne A, Curran P. Necessity breeds invention: a study of outpatient management of low velocity gunshot wounds. Emerg Med J. 2006;23:376–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marcus NA, Blair WF, Shuck JM, et al. Low-velocity gunshot wounds to extremities. J Trauma. 1980;20:1061–4.

    Article  CAS  PubMed  Google Scholar 

  22. Ordog GJ, Sheppard GF, Wasserberger JS, et al. Infection in minor gunshot wounds. J Trauma. 1993;34:358–65.

    Article  CAS  PubMed  Google Scholar 

  23. Global Road Safety Partnership. 2004. Annual report. Available at: http://www.grsproadsafety.org/themes/default/pdfs/AR04%20FINAL.pdf.

  24. Bowyer G. Debridement of extremity war wounds. J Am Acad Orthop Surg. 2006;14 Suppl 10:S52–6.

    Article  PubMed  Google Scholar 

  25. Fleming A. On the bacteriology of septic wounds. Lancet. 1915;2:638–43.

    Article  Google Scholar 

  26. Murray CK, Yun HC, Griffith ME, et al. Acinetobacter infection: what was the true impact during the Vietnam conflict? Clin Infect Dis. 2006;43:383–4.

    Article  PubMed  Google Scholar 

  27. Aronson NE, Sanders JW, Moran KA. In harm’s way: infections in deployed American military forces. Clin Infect Dis. 2006;43:1045–51.

    Article  PubMed  Google Scholar 

  28. Dewa AST, Green AD. Wound infection surveillance. Presented at military surgery. 2010. Gosport, 29 April 2010. Available at: http://www.militarysurgery.org.uk.

  29. Yun HC, Murray CK, Roop SA, et al. Bacteria recovered from patients admitted to a deployed U.S. military hospital in Baghdad, Iraq. Mil Med. 2006;171:821–5.

    Article  PubMed  Google Scholar 

  30. Calhoun JH, Murray CK, Manring MM. Multidrug-resistant organisms in military wounds from Iraq and Afghanistan. Clin Orthop Relat Res. 2008;466:​1356–62.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Murray CK, Hsu JR, Solomkin JS, et al. Prevention and management of infections associated with combat-related extremity injuries. J Trauma. 2008;64:S239–51.

    Article  PubMed  Google Scholar 

  32. Okike K. Trends in the management of open fractures. J Bone Joint Surg. 2006;88:2739–48.

    Article  PubMed  Google Scholar 

  33. Carsenti-Etesse H, Doyon F, Desplaces N, et al. Epidemiology of bacterial infection during management of open leg fractures. Eur J Clin Microbiol Infect Dis. 1999;18:315–23.

    Article  CAS  PubMed  Google Scholar 

  34. Murray CK, Obremskey WT, Hsu JR, et al; Prevention of Combat-Related Infections Guidelines. Panel prevention of infections associated with combat-related extremity injuries. J Trauma. 2011;71:S235–57.

    Google Scholar 

  35. Varkentien T, Rodriguez C, Lloyd B, et al; Infectious Disease Clinical Research Program Trauma Infectious Disease Outcomes Study Group. Invasive mold infections following combat-related injuries. Clin Infect Dis. 2012;55:1441–9.

    Google Scholar 

  36. Ali MH, Hoekzema NA, Bakleh M, et al. The microbiology and risk of infection following open, agricultural upper extremity injuries. J Hand Surg Am. 2008;33:87–93.

    Article  PubMed  Google Scholar 

  37. O’Shea MK. Acinetobacter in modern warfare. Int J Antimicrob Agents. 2012;39:363–75.

    Article  PubMed  Google Scholar 

  38. Miskin IN, Nir-Paz R, Block C, et al. Antimicrobial therapy for wound infections after catastrophic earthquakes. N Engl J Med. 2010;363:2571–3.

    Article  CAS  PubMed  Google Scholar 

  39. Keven K, Ates K, Sever MS, et al. Infectious complications after mass disasters: the Marmara earthquake experience. Scand J Infect Dis. 2003;35:​110–3.

    Article  PubMed  Google Scholar 

  40. Öncül O, Keskin O, Acar HV, et al. Hospital-acquired infections following the 1999 Marmara earthquake. J Hosp Infect. 2002;51:47–51.

    Article  PubMed  Google Scholar 

  41. Kazancioglu R, Cagatay A, Calangu S, et al. The characteristics of infections in crush syndrome. Clin Microbiol Infect. 2002;8:202–6.

    Article  CAS  PubMed  Google Scholar 

  42. Hiransuthikul N, Tantisiriwat W, Lertutsahakul K, et al. Skin and soft-tissue infections among tsunami survivors in southern Thailand. Clin Infect Dis. 2005;41:e93–6. Epub 2005 Oct 13.

    Article  PubMed  Google Scholar 

  43. Kiani QH, Amir M, Ghazanfar MA, et al. Microbiology of wound infections among hospitalised patients following the 2005 Pakistan earthquake. J Hosp Infect. 2009;73:71–8.

    Article  CAS  PubMed  Google Scholar 

  44. Tao C, Kang M, Chen Z, et al. Microbiologic study of the pathogens isolated from wound culture among Wenchuan earthquake survivors. Diagn Microbiol Infect Dis. 2009;63:268–70.

    Article  PubMed  Google Scholar 

  45. Ran YC, Ao XX, Liu L, et al. Distribution and drug resistance of pathogenic bacteria isolated from infected wounds of children after Wenchuan earthquake. Chin J Pediatr [Zhonghua Er Ke Za Zhi]. 2009;47:332–6.

    Google Scholar 

  46. Emergency preparedness and response: emergency wound management for healthcare professionals. Centers for Disease Control and Prevention, Atlanta. 2010. (http://emergency.cdc.gov/disasters/emergwoundhcp.asp#guidance or http://www.bt.cdc.gov/disasters/pdf/emergwoundhcp.pdf).

  47. World Health Organization, Dep of Violence and Injury Prevention and Disability. Prevention and management of wound infection: core principles and protocols. (http://www.who.int/hac/techguidance/tools/Prevention%20and%20management%20of%20wound%20infection.pdf).

  48. Cressey D. Disaster doctors may be using the wrong drugs. Nature. Published online 22 December. 2010;doi:10.1038/news.2010.695.

  49. James GA, Swogger E, Wolcott R, et al. Biofilms in chronic wounds. Wound Repair Regen. 2008;16:37–44.

    Article  PubMed  Google Scholar 

  50. Percival SL, Hill KE, Williams DW, et al. A review of the scientific evidence for biofilms in wounds. Wound Repair Regen. 2012;20:647–57.

    Article  PubMed  Google Scholar 

  51. Hall-Stoodley L, Stoodley P. Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol. 2005;13:7–10. doi:10.1016/j.tim.2004.11.004. Available online 7 December 2004.

    Article  CAS  PubMed  Google Scholar 

  52. Weinstein L, Barza MA. Gas gangrene. N Engl J Med. 1973;289:1129–31.

    Article  CAS  PubMed  Google Scholar 

  53. Pellegrini Jr VD, Reid S, Evarts CM. Complications. In: Rockwood Jr CA, Green DP, Bucholz RW, Heckman JD, editors. Rockwood and Green’s fractures in adults. 4th ed. Philadelphia: Lippincott-Raven; 1996. p. 458–82.

    Google Scholar 

  54. Rehka A, Gopalan TR; Civilian Gas Gangrene. A Clinical Challenge. Lower Extr Wounds. 2007;6:98–101.

    Google Scholar 

  55. Médicins sans Frontières. Tetanus in: clinical guidelines. Paris: Médicins sans Frontières; 2010. p. 170–3.

    Google Scholar 

  56. Wong CH, Kurup A, Tan KC. Group B streptococcus necrotizing fasciitis: an emerging disease? Eur J Clin Microbiol Infect Dis. 2004;23:573–5.

    PubMed  Google Scholar 

  57. Wong CH, Chang HC, Pasupathy S, et al. Necrotizing fasciitis: clinical presentation, microbiology, and determinants of mortality. J Bone Joint Surg Am. 2003;85:1454–60.

    PubMed  Google Scholar 

  58. Taviloglu K, Cabioglu N, Cagatay A, et al. Idiopathic necrotizing fasciitis: risk factors and strategies for management. Am Surg. 2005;71:315–23.

    PubMed  Google Scholar 

  59. Kulkarni VA, Schiffman E, Baitner AC, et al. Septic arthritis associated with closed intra-articular fracture: a case series. J Pediatr Orthop. 2011;31:e8–15.

    Article  PubMed  Google Scholar 

  60. Molyneux EM, Lavy CBD, Lavy VR, et al. Septic arthritis. Lancet. 1998;351:1060–1.

    Article  CAS  PubMed  Google Scholar 

  61. Goldenberg DL. Septic arthritis. Lancet. 1998;351:197–202.

    Article  CAS  PubMed  Google Scholar 

  62. Nunn TR, Cheung WY, Rollinson PD. A prospective study of pyogenic sepsis of the hip in childhood. J Bone Joint Surg Br. 2007;89:100–6.

    Article  CAS  PubMed  Google Scholar 

  63. Parks T, Kado J, Colquhoun S, et al. Underdiagnosis of acute rheumatic fever in primary care settings in a developing country. Trop Med Int Health. 2009;14:1407–13.

    Article  PubMed  Google Scholar 

  64. Mellor SG, Cooper GJ, Bowyer GW. Efficacy of delayed administration of benzylpenicillin in the control of infection in penetrating soft-tissue injuries in war. J Trauma. 1996;40(3 Suppl):S128–34.

    Article  CAS  PubMed  Google Scholar 

  65. Butler F, O’Connor K. Antibiotics in tactical combat casualty care 2002. Mil Med. 2003;168:911–4.

    PubMed  Google Scholar 

  66. Hoff WS, Bonadies JA, Cachecho R, et al. EAST Practice Management Guidelines Work Group: update to practice management guidelines for prophylactic antibiotic use in open fractures. J Trauma. 2011;70:751–4.

    Article  PubMed  Google Scholar 

  67. Gosselin RA, Roberts I, Gillespie WJ. Antibiotics for preventing infection in open limb fractures. Cochrane Database Syst Rev. 2004;1:CD003764.

    Google Scholar 

  68. Al-Arabi YB, Nader M, Hamidian-Jahromi AR, et al. The effect of the timing of antibiotics and surgical treatment on infection rates in open long-bone fractures: a 9-year prospective study from a district general hospital. Injury. 2007;38:900–5.

    Article  PubMed  Google Scholar 

  69. Pollak AN, Jones AL, Castillo RC, et al; LEAP Study Group. The relationship between time to surgical debridement and incidence of infection after open high-energy lower extremity trauma. J Bone Joint Surg Am. 2010;92:7–15.

    Google Scholar 

  70. Patzakis MJ, Harvey Jr JP, Ivler D. The role of antibiotics in the management of open fractures. J Bone Joint Surg Am. 1974;56:532–41.

    CAS  PubMed  Google Scholar 

  71. Bratzler DW. Use of antimicrobial prophylaxis for major surgery: baseline results from the National Surgical Infection Prevention Project. Arch Surg. 2005;140:174–82.

    Article  PubMed  Google Scholar 

  72. Velmahos GC, Toutouzas KG, Sarkisyan G, Chan LS, et al. Severe trauma is not an excuse for prolonged antibiotic prophylaxis. Arch Surg. 2002;137:537–41.

    Article  PubMed  Google Scholar 

  73. MSF-OCP. Guide to antibiotic therapy for MSF orthopedic surgery missions. 2008. http://association.msf.org/.

  74. Hutley EJ, Green AD. Infection in wounds of conflict-old lessons and new challenges. J R Army Med Corps. 2009;155:315–9.

    Article  CAS  PubMed  Google Scholar 

  75. Murray CK, Hospenthal DR, Holcomb JB. Antibiotics use and selection at the point of injury in tactical combat casualty care for casualties with penetrating abdominal injury, shock, or unable to tolerate an oral agent. J Spec Oper Med. 2005;5:56–61.

    Google Scholar 

  76. Zalavras CG, Patzakis MJ, Holtom PD, et al. Management of open fractures. Infect Dis Clin North Am. 2005;19:915–29.

    Article  PubMed  Google Scholar 

  77. Olson SA, Finkemeier CG, Moehring ND. Open fractures. In: Bucholz RW, Heckman JD, editors. Rockwood and Greene’s fractures in adults. 5th ed. Philadelphia: Lippincott, Williams and Wilkins; 2001. p. 285–318.

    Google Scholar 

  78. Hamouda HM, Witso E, Moghani NK, et al. Soft tissue infection after missile injuries to the extremities. A non- randomized, prospective study in Gaza city. Prehosp Disaster Med. 2007;22:106–8.

    PubMed  Google Scholar 

  79. Murray CK. Epidemiology of infections associated with combat-related injuries in Iraq and Afghanistan. J Trauma. 2008;64:S232–8.

    Article  PubMed  Google Scholar 

  80. Hauser CJ, Adams Jr CA, Eachempati SR. Surgical infection society guideline: prophylactic antibiotic use in open fractures: an evidence-based guideline. Surg Infect (Larchmt). 2006;7:379–405.

    Article  Google Scholar 

  81. Campbell JI, Lam TM, Huynh TL, et al. Microbiologic characterization and antimicrobial susceptibility of Clostridium tetani isolated from wounds of patients with clinically diagnosed tetanus. Am J Trop Med Hyg. 2009;80:827–31.

    PubMed  Google Scholar 

  82. Stevens DL, Maier KA, Laine BM, et al. Comparison of clindamycin, rifampicin, tetracycline, metronidazole, and penicillin for efficacy in prevention of experimental gas gangrene due to Clostridium perfringens. J Infect Dis. 1987;155:220–8.

    Article  CAS  PubMed  Google Scholar 

  83. Holtom PD. Antibiotic prophylaxis: current recommendations. J Am Acad Orthop Surg. 2006;14:S98–100.

    Article  PubMed  Google Scholar 

  84. Alexander JW, Solomkin JS, Edwards MJ. Up-dated recommendations for control of surgical site infections. Ann Surg. 2011;253:1082–93.

    Article  PubMed  Google Scholar 

  85. Brolmann FE, Ubbink DT, Nelson EA, et al. Evidence-based decisions for local and systemic wound care. Br J Surg. 2012;99:1172–83.

    Article  CAS  PubMed  Google Scholar 

  86. Owens BD, Wenke JC. Early wound irrigation improves the ability to remove bacteria. J Bone Joint Surg Am. 2007;89:1723–6.

    Article  PubMed  Google Scholar 

  87. Hall S. A review of the effect of tap water versus normal saline on infection rates in acute traumatic wounds. J Wound Care. 2007;16:38–41.

    Article  CAS  PubMed  Google Scholar 

  88. Khan MN, Naqvi AH. Antiseptics, iodine, povidone iodine and traumatic wound cleansing. J Tissue Viability. 2006;16:6–10.

    Article  PubMed  Google Scholar 

  89. Buddensick TJ, Cunningham SC, Kamangar F. Updated literature on povidone-iodine for control of surgical site infections. Ann Surg. 2012;​256:e1–2.

    Article  PubMed  Google Scholar 

  90. Fournel I, Tiv M, Soulias M, et al. Meta- analysis of intraoperative povidone-iodine application to prevent surgical-site infection. Br J Surg. 2010;97:1603–13.

    Article  CAS  PubMed  Google Scholar 

  91. Bhandari M, Schemitsch EH, Adili A, et al. High and low pressure pulsatile lavage of contaminated tibial fractures: an in vitro study of bacterial adherence and bone damage. J Orthop Trauma. 1999;13:526–33.

    Article  CAS  PubMed  Google Scholar 

  92. Hassinger SM, Harding G, Wongworawat MD. High-pressure pulsatile lavage propagates bacteria into soft tissue. Clin Orthop Relat Res. 2005;439:27–31.

    Article  PubMed  Google Scholar 

  93. Argenta LC, Morykwas MJ. Vacuum-assisted closure: a new method for wound control and treatment: clinical experience. Ann Plast Surg. 1997;38:563–77.

    Article  CAS  PubMed  Google Scholar 

  94. Mendonca DA. Negative pressure wound therapy. An important adjunct to wound care. South Med J. 2006;99:562–3.

    Article  PubMed  Google Scholar 

  95. Harrison WJ. Open tibia fractures in HIV positive patients. Malawi Med J. 2009;21:174–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Mody GM, Parke FA, Reveille JD. Articular manifestations of human immunodeficiency virus infection. Best Pract Res Clin Rheumatol. 2003;17:265–87.

    Article  PubMed  Google Scholar 

  97. Guild GN, Moore TJ, Barnes W, et al. CD4 count is associated with postoperative infection in patients with orthopaedic trauma who are HIV positive. Clin Orthop Relat Res. 2012;470:1507–12.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Himmelreich H, Rabenau HF, Rindermann M, et al. The management of needlestick injuries. Dtsch Arztebl Int. 2013;110:61–7.

    PubMed  PubMed Central  Google Scholar 

  99. Baggaley R, Doherty M, Ball A, et al. The strategic use of antiretrovirals to prevent HIV infection: a converging agenda. Clin Infect Dis 2015;60:S159–60.

    Google Scholar 

  100. Mast EE, Weinbaum CM, Fiore AE, et al; Advisory Committee on Immunization Practices (ACIP) Centers for Disease Control and Prevention (CDC). A comprehensive immunization strategy to eliminate transmission of hepatitis B virus infection in the United States: recommendations of the Advisory Committee on Immunization Practices (ACIP) part II: immunization of adults. MMWR Recomm Rep. 2006;55:1–33.

    Google Scholar 

  101. Aharonson-Daniel L, Klein Y, Peleg K. Suicide bombers form a new injury profile. Ann Surg. 2006;244:1018–23.

    Article  PubMed  PubMed Central  Google Scholar 

  102. CDC. Updated U.S. Public Health Service guidelines for the management of occupational exposures to HBV, HCV, and HIV and recommendations for postexposure prophylaxis. MMWR. 2001;50(No. RR-11):1–55.

    Google Scholar 

  103. Kumar S, Agarwal A, Arora A. Skeletal tuberculosis following fracture fixation. J Bone Joint Surg (Amer). 2006;88:1101–6.

    Article  Google Scholar 

  104. Barr DA, Whittington AM, White B, et al. Extra-pulmonary tuberculosis developing at sites of previous trauma. J Infect. 2013;66:313–9.

    Article  PubMed  Google Scholar 

  105. Hopewell PC. Overview of clinical tuberculosis. In: Bloom BR, editor. Tuberculosis. Washington, DC: American Society for Microbiology; 2005. p. 25–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Contini MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Contini, S. (2016). Microbiology in the Low-Resource Environment. In: Robinson, J. (eds) Orthopaedic Trauma in the Austere Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-29122-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29122-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29120-8

  • Online ISBN: 978-3-319-29122-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics