Skip to main content

Carbon: The Soul of Future Nanoelectronics

  • Conference paper
  • First Online:
  • 1330 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 178))

Abstract

Quantum transport in carbon allotropes emerging from graphene/graphite nanolayers is described. Nonequilibrium Arora’s distribution function (NEADF) includes the energy gained/lost in a mean free path (mfp) in the presence of an electric field. It is shown to organize the randomness in equilibrium to streamlined motion in extreme nonequilibrium leading to saturation of drift velocity and the current. A simple tanh form is obtained that is strictly valid for nondegenerate statistics, but is extended to degenerate statistics by defining a degeneracy temperature. Ballistic transport where device length is smaller than the scattering-limited mfp is shown to degrade the mobility. Resistance quantum is obtained in 1D configuration that is generalized to give contact resistance and channel resistance. Magnetotransport in graphene is discussed to demonstrate the utilization of magnetic field in characterization and performance evaluation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P.H.S. Wong, D. Akinwande, Carbon Nanotube and Graphene Device Physics (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  2. V.K. Arora, A. Bhattacharyya, Cohesive band structure of carbon nanotubes for applications in quantum transport. Nanoscale 5, 10927–10935 (2013)

    Article  ADS  Google Scholar 

  3. V.K. Arora, A. Bhattacharyya, Unified bandgap engineering of graphene nanoribbons. Physica status solidi (b). 251(11) (2014)

    Google Scholar 

  4. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  5. V.K. Arora, M.L.P. Tan, C. Gupta, High-field transport in a graphene nanolayer. J. Appl. Phys. 112, 114330 (2012)

    Article  ADS  Google Scholar 

  6. V.K. Arora, Nanoelectronics: Quantum Engineering of Low-Dimensional Nanoensembles (CRC Press/Taylor and Francis Group, USA, 2015)

    Book  Google Scholar 

  7. V.K. Arora, M.L.P. Tan, in High-Field Transport in Graphene and Carbon Nanotubes, presented at the International Conference on Electron Devices and Solid State Circuits 2013 (EDSSC2013), IEEEXplore Digital Library, Hong Kong Polytechnic University, 2013

    Google Scholar 

  8. V.K. Arora, Nanoelectronics: Quantum Engineering of Low-Dimensional Nanoensemble (Wilkes University, Wilkes-Barre, 2013)

    Google Scholar 

  9. V.K. Arora, D.C.Y. Chek, M.L.P. Tan, A.M. Hashim, Transition of equilibrium stochastic to unidirectional velocity vectors in a nanowire subjected to a towering electric field. J. Appl. Phys. 108, 114314–114318 (2010)

    Article  ADS  Google Scholar 

  10. V.K. Arora, Quantum Nanoengineering (Wilkes University, Wilkes-Barre, PA, 2012)

    Google Scholar 

  11. M.L.P. Tan, V.K. Arora, “Comment on “Theoretical analysis of high-field transport in graphene on a substrate”. [J. Appl. Phys. 116, 034507 (2014)],” J. Appl. Phys. 116 (2014)

    Google Scholar 

  12. V.E. Dorgan, A. Behnam, H.J. Conley, K.I. Bolotin, E. Pop, High-field electrical and thermal transport in suspended graphene. Nano Lett. 13, 4581–4586 (2013)

    Article  ADS  Google Scholar 

  13. Z. Yao, C.L. Kane, C. Dekker, High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941–2944 (2000)

    Article  ADS  Google Scholar 

  14. V.K. Arora, M.S.Z. Abidin, M.L.P. Tan, M.A. Riyadi, Temperature-dependent ballistic transport in a channel with length below the scattering-limited mean free path. J. Appl. Phys. 111, 054301, 1 Mar 2012

    Google Scholar 

  15. V.K. Arora, M.S.Z. Abidin, S. Tembhurne, M.A. Riyadi, Concentration dependence of drift and magnetoresistance ballistic mobility in a scaled-down metal-oxide semiconductor field-effect transistor, Appl. Phys. Lett. 99, 063106–063106–3 (2011)

    Google Scholar 

  16. M.A. Riyadi, V.K. Arora, The channel mobility degradation in a nanoscale MOSFET due to injection from the ballistic contacts. J. Appl. Phys. 109, 056103 (2011)

    Article  ADS  Google Scholar 

  17. P. Yang, R. Yan, M. Fardy, Semiconductor nanowire: What’s next? Nano Lett. 10, 1529–1536 (2010)

    Article  ADS  Google Scholar 

  18. H.C. Chin, A. Bhattacharyya, V.K. Arora, Extraction of nanoelectronic parameters from quantum conductance in a carbon nanotube. Carbon 76, 451–454 (2014)

    Article  Google Scholar 

  19. V.K. Arora, “Ballistic transport in nanoscale devices,” presented at the MIXDES 2012: 19th International Conference MIXED Design of Integrated Circuits and Systems (Wasaw, Poland, 2012)

    Google Scholar 

  20. V.K. Arora, M.S.Z. Abidin, M.L.P. Tan, M.A. Riyadi, Temperature-dependent ballistic transport in a channel with length below the scattering-limited mean free path. J. Appl. Phys. 111, 1 Mar 2012

    Google Scholar 

  21. M.S. Purewal, B.H. Hong, A. Ravi, B. Chandra, J. Hone, P. Kim, Scaling of resistance and electron mean free path of single-walled carbon nanotubes. Phys. Rev. Lett. 98, 186808, 4 May 2007

    Google Scholar 

  22. K.S. Novoselov, S.V. Morozov, T.M.G. Mohinddin, L.A. Ponomarenko, D.C. Elias, R. Yang, I.I. Barbolina, P. Blake, T.J. Booth, D. Jiang, J. Giesbers, E.W. Hill, A.K. Geim, Electronic properties of graphene. Physica Status Solidi B-Basic Solid State Phys. 244, 4106–4111 (2007)

    Article  ADS  Google Scholar 

  23. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Google Scholar 

  24. D.R. Greenberg, J.A.d. Alamo, Velocity saturation in the extrinsic device: a fundamental limit in HFET’s. IEEE Trans. Electron. Devices 41, 1334–1339 (1994)

    Google Scholar 

  25. V.K. Arora, “Quantum Transport in Nanowires and Nanographene,” presented at the 28th International Conference on Microelectronics (MIEL2012), Nis, Serbia (2012)

    Google Scholar 

  26. T. Saxena, D.C.Y. Chek, M.L.P. Tan, V.K. Arora, Microcircuit modeling and simulation beyond Ohm’s law. IEEE Trans. Educ. 54, 34–40 (2011)

    Article  Google Scholar 

  27. M.L.P. Tan, T. Saxena, V. Arora, Resistance blow-up effect in micro-circuit engineering. Solid-State Electron. 54, 1617–1624 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay K. Arora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Arora, V.K. (2017). Carbon: The Soul of Future Nanoelectronics. In: Jain, V., Rattan, S., Verma, A. (eds) Recent Trends in Materials and Devices. Springer Proceedings in Physics, vol 178. Springer, Cham. https://doi.org/10.1007/978-3-319-29096-6_2

Download citation

Publish with us

Policies and ethics