Skip to main content

Optical Properties of (Fe2O3)1−x/(Cr2O3)x (Where x = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5) Nanocomposites

  • Conference paper
  • First Online:
Recent Trends in Materials and Devices

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 178))

Abstract

In this paper we report the preparation of (Fe2O3)1−x/(Cr2O3)x (where x = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5) nanocomposites. The FESEM image of pure Fe2O3 sample shows that the uniform particle size distribution is observed. The average particle size of the Fe2O3 nanoparticles is 19 nm. The crystallite size increases from 20 to 28 nm with increasing the weight percentage of the Cr2O3 in the Fe2O3/Cr2O3 nanocomposite up to x = 0.5. The Fourier transform infrared spectroscopy (FTIR) spectra shows that the absorption peaks appear at 588 and 616 cm−1 which represent the Fe–O and Cr–O bond respectively. The values of band gap are found 2.1, 1.9, 1.8, 1.6, 1.4 and 1.2 eV for the x = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5 respectively by UV-Visible spectroscopy. Thus, the decrease in band gap and increase in refractive index with increasing concentration of Cr2O3 have been observed. These high refractive index materials can be used for making optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Huang, A. Notten, N. Rasters, J. Technol. Transf. 36(2), 145–172 (2011)

    Article  Google Scholar 

  2. L. Liu, Z. Qi, X. Zhu, J. Appl. Polym. Sci. 71(7), 1133–1138 (1999)

    Article  Google Scholar 

  3. M. Mohapatra, S. Anand, Int. J. Eng. Sci. Technol. 2(8), 127–146 (2010)

    Google Scholar 

  4. K. Raj, B. Moskowitz, R. Casciari, Magn. Magn. Mater. 149(1), 174–180 (1995)

    Article  ADS  Google Scholar 

  5. R.D. McMichael, R.D. Shull, L.J. Swartzendruber, L.H. Bennett, R.E. Watson, J. Magn. Magn. Mater. 111(2), 29–33 (1992)

    Article  ADS  Google Scholar 

  6. M.M. Rahman, A. Jamal, S.B. Khan, M. Faisal, J. Nanopart. Res. 13(9), 3789–3799 (2011)

    Article  Google Scholar 

  7. A.S.C. Brown, J.S.J. Hargreaves, B. Rijniersce, Catal. Lett. 53, 7–13 (1998)

    Article  Google Scholar 

  8. J. Chen, L. Xu, W. Li, X. Gou, Adv. Mater. 17(5), 582–586 (2005)

    Article  Google Scholar 

  9. H. Zeng, J. Li, J.P. Liu, Z.L. Wang, S. Sun, Nature 420(6914), 395–398 (2002)

    Article  ADS  Google Scholar 

  10. V. Kesavan, P.S. Sivanand, S. Chandrasekaran, Y. Koltypin, A. Gedanken, Angew. Chem. Int. Ed. 38(23), 3521–3523 (1999)

    Article  Google Scholar 

  11. J.L. Wilson, P. Poddar, N.A. Frey, H. Srikanth, K. Mohomed, J.P. Harmon, S. Ktha, J. Wachsmuth, J. Appl. Phys. 95(3), 1439–1443 (2004)

    Article  ADS  Google Scholar 

  12. L. Casas, A. Roig, E. Rodriguez, E. Molins, J. Tejada, J. Sort, J. Non-Cryst. Solids 285(1), 37–43 (2001)

    Article  ADS  Google Scholar 

  13. R. Prucek, J. Tucek, M. Kilianova, A. Panacek, L. Kvitek, J. Filip, M. Kolar, K. Tomankova, R. Zboril, Biomaterials 32(21), 4704–4713 (2011)

    Article  Google Scholar 

  14. N. Adhlakha, K.L. Yadav, J. Mater. Sci. 49, 4423–4438 (2014)

    Article  ADS  Google Scholar 

  15. S.R. Ananda, N.M. Gowda, Mod. Res. Catal. 2, 127–135 (2013)

    Article  Google Scholar 

  16. X.Q. Zhang, S.W. Gong, Y. Zhang, T. Yang, C.Y. Wang, N. Gu, J. Mater. Chem. 20(24), 5110–5116 (2010)

    Article  Google Scholar 

  17. M. Shateriana, M. Enhessarib, D. Rabbanic, M. Asgharid, M. Salavati-Niasari, Appl. Surf. Sci. 318, 213–217 (2014)

    Article  ADS  Google Scholar 

  18. M.B. Sahana, C. Sudakar, G. Setzler, A. Dixit, J.S. Thakur, Appl. Phys. Lett. 93, 231909–231911 (2008)

    Article  ADS  Google Scholar 

  19. L. Hannachi, N. Bouarissa, Phys. B Condens. Matter 404(20), 3650–3654 (2009)

    Article  ADS  Google Scholar 

  20. M.N. Batin, V. Popescu, Optoelectronics and advanced materials-rapid communications 6(7–8), 727–729 (2012)

    Google Scholar 

Download references

Acknowledgments

Author (PT) is thankful to UGC, New Delhi for providing fellowship during M.Phil. One of the authors (KY) is grateful UGC, New Delhi for providing the Start-up-Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamlesh Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Thakur, P., Thakur, A., Yadav, K. (2017). Optical Properties of (Fe2O3)1−x/(Cr2O3)x (Where x = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5) Nanocomposites. In: Jain, V., Rattan, S., Verma, A. (eds) Recent Trends in Materials and Devices. Springer Proceedings in Physics, vol 178. Springer, Cham. https://doi.org/10.1007/978-3-319-29096-6_19

Download citation

Publish with us

Policies and ethics