Skip to main content

Synthesis of Graphene by Low Pressure Chemical Vapor Deposition (LPCVD) Method

  • Conference paper
  • First Online:
Book cover Recent Trends in Materials and Devices

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 178))

Abstract

Graphene , the wonder material, is a one atom thick two dimensional crystal lattice having a honeycomb like structure. Its peculiar electrical, mechanical and optical properties have attracted the attention of the researchers like never before. Graphene film with two dimensional structure were successfully prepared via a physical method on Ni coated Si wafer using low pressure chemical vapor (LPCVD) method at temperature as low as 650 °C. For this growth acetylene was used as source gas and the hydrogen as the carrier gas in ratio of 1:20. The as-grown graphene was characterized using Scanning Electron Microscopy, Fourier transformation infra-red (FTIR) and Raman Spectroscopy. The SEM, FTIR and Raman spectroscopy confirmed the successful growth of multilayer graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. Y. Zhang, J.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  3. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  4. X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 319, 1229 (2008)

    Article  ADS  Google Scholar 

  5. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  6. H.K. Chae, D.Y. Siberio-Pérez, J. Kim, Nature 427(6974), 523–527 (2004)

    Article  ADS  Google Scholar 

  7. L.S. Schadler, S.C. Giannaris, P.M. Ajayan, Appl. Phys. Lett. 73(26), 3842–3844 (1998)

    Article  ADS  Google Scholar 

  8. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mat. 6, 662 (2007)

    Article  Google Scholar 

  9. P. Blake, Nano Lett. 8, 1704 (2008)

    Article  ADS  Google Scholar 

  10. E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Nano Lett. 8, 2277 (2008)

    Article  ADS  Google Scholar 

  11. K.S. Kim, Y. Zhao, H. Jang et al., Nature 457(7230), 706–710 (2009)

    Article  ADS  Google Scholar 

  12. A. Reina, X.T. Jia, J. Ho et al., Nano Lett. 9(1), 30–35 (2009)

    Article  ADS  Google Scholar 

  13. Q.J. Yu, S. Lian, S. Siriponglert, H. Li, Y.P. Chen, S. Pei, Appl. Phys. Lett. 93, 113103 (2008)

    Article  ADS  Google Scholar 

  14. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Nature 457, 706–710 (2009)

    Article  ADS  Google Scholar 

  15. R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M.S. Dresselhaus, Adv. Phys. 30, 413–550 (2011)

    Article  ADS  Google Scholar 

  16. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. B 97, 187401 (2006)

    ADS  Google Scholar 

  17. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Nano Lett. 7, 238 (2007)

    Article  ADS  Google Scholar 

  18. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P.C. Eklund, Nano Lett. 6, 2667 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

One of the authors (Sunny Khan) is thankful to UGC for providing financial assistance in the form of SRF under Maulana Azad National Fellowship for Minority Students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zulfequar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Khan, S., Ali, J., Harsh, Husain, M., Zulfequar, M. (2017). Synthesis of Graphene by Low Pressure Chemical Vapor Deposition (LPCVD) Method. In: Jain, V., Rattan, S., Verma, A. (eds) Recent Trends in Materials and Devices. Springer Proceedings in Physics, vol 178. Springer, Cham. https://doi.org/10.1007/978-3-319-29096-6_15

Download citation

Publish with us

Policies and ethics