Skip to main content

Splicing Factor Mutations in Cancer

  • Chapter
  • First Online:
RNA Processing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 907))

Abstract

Many cancers demonstrate aberrant splicing patterns that contribute to their development and progression. Recently, recurrent somatic mutations of genes encoding core subunits of the spliceosome have been identified in several different cancer types. These mutations are most common in hematologic malignancies like the myelodysplastic syndromes (MDS), acute myeloid leukemia, and chronic lymphocytic leukemia, but also in occur in several solid tumors at lower frequency. The most frequent mutations occur in SF3B1, U2AF1, SRSF2, and ZRSR2 and are largely exclusive of each other. Mutations in SF3B1, U2AF1, and SRSF2 acquire heterozygous missense mutations in specific codons, resembling oncogenes. ZRSR2 mutations include clear loss-of-function variants, a pattern more common to tumor suppressor genes. These splicing factors are associated with distinct clinical phenotypes and patterns of mutation in different malignancies. Mutations have both diagnostic and prognostic relevance. Splicing factor mutations appear to affect only a minority of transcripts which show little overlap by mutation type. How differences in splicing caused by somatic mutations of spliceosome subunits lead to oncogenesis is not clear and may involve different targets in each disease type. However, cells with mutated splicing machinery may be particularly vulnerable to further disruption of the spliceosome suggesting a novel strategy for the targeted therapy of cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. La Cognata V, Iemmolo R, D’Agata V et al (2014) Increasing the coding potential of genomes through alternative splicing: the case of PARK2 gene. Curr Genomics 15:203–216

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dutertre M, Sanchez G, Barbier J et al (2011) The emerging role of pre-messenger RNA splicing in stress responses: sending alternative messages and silent messengers. RNA Biol 8:740–747

    Article  CAS  PubMed  Google Scholar 

  3. Ghigna C, Valacca C, Biamonti G. (2008) Alternative splicing and tumor progression. Current genomics 9(8):556–70. PubMed PMID: 19516963; PubMed Central PMCID: PMC2694562

    Google Scholar 

  4. Wang L, Zuo B, Xu D, Ren Z, Zhang H, Li X, et al. (2012) Alternative splicing of the porcine glycogen synthase kinase 3beta (GSK-3beta) gene with differential expression patterns and regulatory functions. PLoS One. 7(7):e40250. PubMed PMID:22792253; PubMed Central PMCID:PMC3391277

    Google Scholar 

  5. Pal S, Gupta R, Davuluri RV (2012) Alternative transcription and alternative splicing in cancer. Pharmacol Ther 136:283–294

    Article  CAS  PubMed  Google Scholar 

  6. Shkreta L, Bell B, Revil T et al (2013) Cancer-associated perturbations in alternative pre-messenger RNA splicing. Cancer Treat Res 158:41–94

    Article  PubMed  Google Scholar 

  7. Prochazka L, Tesarik R, Turanek J (2014) Regulation of alternative splicing of CD44 in cancer. Cell Signal 26:2234–2239

    Article  CAS  PubMed  Google Scholar 

  8. Brown RL, Reinke LM, Damerow MS et al (2011) CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J Clin Invest 121:1064–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yoshida K, Ogawa S (2014) Splicing factor mutations and cancer. Wiley Interdiscip Rev RNA 5:445–459

    Article  CAS  PubMed  Google Scholar 

  10. Papaemmanuil E, Cazzola M, Boultwood J et al (2011) Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 365:1384–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yoshida K, Sanada M, Shiraishi Y et al (2011) Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478:64–69

    Article  CAS  PubMed  Google Scholar 

  12. Makishima H, Visconte V, Sakaguchi H et al (2012) Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood 119:3203–3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bejar R (2014) Clinical and genetic predictors of prognosis in myelodysplastic syndromes. Haematologica 99:956–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Papaemmanuil E, Gerstung M, Malcovati L et al (2013) Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122:3616–3627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haferlach T, Nagata Y, Grossmann V et al (2014) Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 28:241–247

    Article  CAS  PubMed  Google Scholar 

  16. Bejar R, Stevenson K, Abdel-Wahab O et al (2011) Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med 364:2496–2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Quesada V, Conde L, Villamor N et al (2012) Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 44:47–52

    Article  CAS  Google Scholar 

  18. Wang L, Lawrence MS, Wan Y et al (2011) SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 365:2497–2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bonnal S, Vigevani L, Valcarcel J (2012) The spliceosome as a target of novel antitumour drugs. Nat Rev Drug Discov 11:847–859

    Article  CAS  PubMed  Google Scholar 

  20. Matsunawa M, Yamamoto R, Sanada M et al (2014) Haploinsufficiency of Sf3b1 leads to compromised stem cell function but not to myelodysplasia. Leukemia 28:1844–1850

    Article  CAS  PubMed  Google Scholar 

  21. Visconte V, Rogers HJ, Singh J et al (2012) SF3B1 haploinsufficiency leads to formation of ring sideroblasts in myelodysplastic syndromes. Blood 120:3173–3186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Visconte V, Tabarroki A, Zhang L et al (2014) Splicing factor 3b subunit 1 (Sf3b1) haploinsufficient mice display features of low risk Myelodysplastic syndromes with ring sideroblasts. J Hematol Oncol 7:89

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dolatshad H, Pellagatti A, Fernandez-Mercado M et al (2015) Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells. Leukemia 29:1092–1103

    Article  CAS  PubMed  Google Scholar 

  24. Te Raa GD, Derks IA, Navrkalova V et al (2014) The impact of SF3B1 mutations in CLL on the DNA-damage response., Leukemia

    Google Scholar 

  25. Shiozawa Y, Sato-Otsubo S, Gallì A et al (2014) Comprehensive analysis of aberrant RNA splicing in myelodysplastic syndromes. Blood 124:826

    Article  Google Scholar 

  26. Field MG, Harbour JW (2014) Recent developments in prognostic and predictive testing in uveal melanoma. Curr Opin Ophthalmol 25:234–239

    Article  PubMed  PubMed Central  Google Scholar 

  27. Malcovati L, Papaemmanuil E, Bowen DT et al (2011) Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood 118:6239–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baliakas P, Hadzidimitriou A, Sutton LA et al (2014) Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia 29(2):329–336

    Article  PubMed  Google Scholar 

  29. Imielinski M, Berger AH, Hammerman PS et al (2012) Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150:1107–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bejar R, Stevenson KE, Caughey BA et al (2012) Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. J Clin Oncol 30:3376–3382

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ilagan JO, Ramakrishnan A, Hayes B et al (2015) U2AF1 mutations alter splice site recognition in hematological malignancies. Genome Res 25:14–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shirai CL, Ley JN, White BS et al (2014) Mutant U2AF1 expression alters hematopoiesis and Pre-mRNA splicing in transgenic mice. Blood 124:827

    Article  Google Scholar 

  33. Brooks AN, Choi PS, de Waal L et al (2014) A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events. PLoS One 9, e87361

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shao C, Yang B, Wu T et al (2014) Mechanisms for U2AF to define 3′ splice sites and regulate alternative splicing in the human genome. Nat Struct Mol Biol 21:997–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moon H, Cho S, Loh TJ et al (2014) SRSF2 promotes splicing and transcription of exon 11 included isoform in Ron proto-oncogene. Biochim Biophys Acta 1839:1132–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pandit S, Zhou Y, Shiue L et al (2013) Genome-wide analysis reveals SR protein cooperation and competition in regulated splicing. Mol Cell 50:223–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mian SA, Smith AE, Kulasekararaj AG et al (2013) Spliceosome mutations exhibit specific associations with epigenetic modifiers and proto-oncogenes mutated in myelodysplastic syndrome. Haematologica 98:1058–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Patnaik MM, Lasho TL, Finke CM et al (2013) Spliceosome mutations involving SRSF2, SF3B1, and U2AF35 in chronic myelomonocytic leukemia: prevalence, clinical correlates, and prognostic relevance. Am J Hematol 88:201–206

    Article  CAS  PubMed  Google Scholar 

  39. Meggendorfer M, Roller A, Haferlach T et al (2012) SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML). Blood 120:3080–3088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang J, Lieu YK, Ali AM et al (2015) Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities. Proc Natl Acad Sci U S A 112:E4726–E4734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim E, Ilagan JO, Liang Y et al (2015) SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell 27:617–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim E, Ilagan JO, Lee S et al (2014) SRSF2 mutations impair hematopoietic differentiation by altering exonic splicing enhancer preference. Blood 124:824

    Google Scholar 

  43. Neumann M, Vosberg S, Schlee C et al (2015) Mutational spectrum of adult T-ALL. Oncotarget 6:2754–2766

    Article  PubMed  Google Scholar 

  44. Kim SS, Stevenson KE, Yoda A et al (2013) Loss-of-function mutations in the splicing factor ZRSR2 Are common in Blastic plasmacytoid dendritic cell neoplasm and have male predominance. Blood 122:741

    Google Scholar 

  45. Madan V, Kanojia D, Li J et al (2015) Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome. Nat Commun 6:6042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kurtovic-Kozaric A, Przychodzen B, Singh J et al (2015) PRPF8 defects cause missplicing in myeloid malignancies. Leukemia 29:126–136

    Article  CAS  PubMed  Google Scholar 

  47. Dehm SM (2013) Test-firing ammunition for spliceosome inhibition in cancer. Clin Cancer Res 19:6064–6066

    Article  CAS  PubMed  Google Scholar 

  48. Eskens FA, Ramos FJ, Burger H et al (2013) Phase I pharmacokinetic and pharmacodynamic study of the first-in-class spliceosome inhibitor E7107 in patients with advanced solid tumors. Clin Cancer Res 19:6296–6304

    Article  CAS  PubMed  Google Scholar 

  49. Kashyap MK, Kumar D, Villa R et al (2015) Targeting the spliceosome in chronic lymphocytic leukemia with the macrolides FD-895 and pladienolide-B. Haematologica 100:945–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hsu TY, Simon LM, Neill NJ et al (2015) The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature 525:384–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Bejar M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bejar, R. (2016). Splicing Factor Mutations in Cancer. In: Yeo, G. (eds) RNA Processing. Advances in Experimental Medicine and Biology, vol 907. Springer, Cham. https://doi.org/10.1007/978-3-319-29073-7_9

Download citation

Publish with us

Policies and ethics