Skip to main content

Single Molecule Approaches in RNA-Protein Interactions

  • Chapter
  • First Online:
RNA Processing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 907))

Abstract

RNA-protein interactions govern every aspect of RNA metabolism, and aberrant RNA-binding proteins are the cause of hundreds of genetic diseases. Quantitative measurements of these interactions are necessary in order to understand mechanisms leading to diseases and to develop efficient therapies. Existing methods of RNA-protein interactome capture can afford a comprehensive snapshot of RNA-protein interaction networks but lack the ability to characterize the dynamics of these interactions. As all ensemble methods, their resolution is also limited by statistical averaging. Here we discuss recent advances in single molecule techniques that have the potential to tackle these challenges. We also provide a thorough overview of single molecule colocalization microscopy and the essential protein and RNA tagging and detection techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CoSMoS:

Colocalization single molecule spectroscopy

EM-CCD:

Electron-multiplied charge-coupled device

HILO:

Highly inclined and laminated optical sheet microscopy

RBP:

RNA-binding protein

RNP:

Ribonucleoprotein

sCMOS:

Scientific complementary metal-oxide-semiconductor

TIRF:

Total internal reflection fluorescence

References

  1. Moore MJ (2005) From birth to death: the complex lives of eukaryotic mRNAs. Science 309:1514–1518. doi:10.1126/science.1111443

    Article  CAS  PubMed  Google Scholar 

  2. Balagopal V, Parker R (2009) Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs. Curr Opin Cell Biol 21:403–408. doi:10.1016/j.ceb.2009.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Singh G, Kucukural A, Cenik C et al (2012) The cellular EJC interactome reveals higher-order mRNP structure and an EJC-SR protein nexus. Cell 151:750–764. doi:10.1016/j.cell.2012.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Graille M, Séraphin B (2012) Surveillance pathways rescuing eukaryotic ribosomes lost in translation. Nat Rev Mol Cell Biol 13:727–735. doi:10.1038/nrm3457

    Article  CAS  PubMed  Google Scholar 

  5. Nürenberg E, Tampé R (2013) Tying up loose ends: ribosome recycling in eukaryotes and archaea. Trends Biochem Sci 38:64–74. doi:10.1016/j.tibs.2012.11.003

    Article  PubMed  Google Scholar 

  6. Parker R (2012) RNA degradation in Saccharomyces cerevisae. Genetics 191:671–702. doi:10.1534/genetics.111.137265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baltz AG, Munschauer M, Schwanhäusser B et al (2012) The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell 46:674–690. doi:10.1016/j.molcel.2012.05.021

    Article  CAS  PubMed  Google Scholar 

  8. Castello A, Fischer B, Eichelbaum K et al (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149:1393–1406. doi:10.1016/j.cell.2012.04.031

    Article  CAS  PubMed  Google Scholar 

  9. Castello A, Fischer B, Hentze MW, Preiss T (2013) RNA-binding proteins in Mendelian disease. Trends Genet 29:318–327. doi:10.1016/j.tig.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  10. Lukong KE, Chang K, Khandjian EW, Richard S (2008) RNA-binding proteins in human genetic disease. Trends Genet 24:416–425. doi:10.1016/j.tig.2008.05.004

    Article  CAS  PubMed  Google Scholar 

  11. Audibert A, Weil D, Dautry F (2002) In Vivo kinetics of mRNA splicing and transport in mammalian cells. Mol Cell Biol 22(19):6706–6718. doi:10.1128/MCB.22.19.6706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Trcek T, Sato H, Singer RH, Maquat LE (2013) Temporal and spatial characterization of nonsense-mediated mRNA decay. Genes Dev 27:541–551. doi:10.1101/gad.209635.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Singh G, Ricci EP, Moore MJ (2013) RIPiT-Seq: a high-throughput approach for footprinting RNA: protein complexes. Methods 65(3):320–332. doi:10.1016/j.ymeth.2013.09.013

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chu C, Qu K, Zhong FL et al (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44:667–678. doi:10.1016/j.molcel.2011.08.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Crawford DJ, Hoskins AA, Friedman LJ et al (2008) Visualizing the splicing of single pre-mRNA molecules in whole cell extract. RNA 14:170–179. doi:10.1261/rna.794808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoskins AA, Friedman LJ, Gallagher SS et al (2011) Ordered and dynamic assembly of single spliceosomes. Science 331:1289–1295. doi:10.1126/science.1198830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shcherbakova I, Hoskins AA, Friedman LJ et al (2013) Alternative spliceosome assembly pathways revealed by single-molecule fluorescence microscopy. Cell Rep 5:151–165. doi:10.1016/j.celrep.2013.08.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoskins AA, Gelles J, Moore MJ (2011) New insights into the spliceosome by single molecule fluorescence microscopy. Curr Opin Chem Biol 15:864–870. doi:10.1016/j.cbpa.2011.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Friedman LJ, Chung J, Gelles J (2006) Viewing dynamic assembly of molecular complexes by multi-wavelength single-molecule fluorescence. Biophys J 91:1023–1031. doi:10.1529/biophysj.106.084004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Friedman LJ, Mumm JP, Gelles J (2013) RNA polymerase approaches its promoter without long-range sliding along DNA. Proc Natl Acad Sci U S A 110:9740–9745. doi:10.1073/pnas.1300221110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Friedman LJ, Gelles J (2012) Mechanism of transcription initiation at an activator-dependent promoter defined by single-molecule observation. Cell 148:679–689. doi:10.1016/j.cell.2012.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grünwald D, Singer RH (2010) In Vivo imaging of labelled endogenous β-actin mRNA during nucleocytoplasmic transport. Nature 467:604–607. doi:10.1038/nature09438

    Article  PubMed  PubMed Central  Google Scholar 

  23. Grünwald D, Singer RH, Rout M (2011) Nuclear export dynamics of RNA-protein complexes. Nature 475:333–341. doi:10.1038/nature10318

    Article  PubMed  PubMed Central  Google Scholar 

  24. Manley S, Gillette JM, Patterson GH et al (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5:155–157. doi:10.1038/NMETH.1176

    Article  CAS  PubMed  Google Scholar 

  25. Pinaud F, Dahan M (2011) Targeting and imaging single biomolecules in living cells by complementation-activated light microscopy with split-fluorescent proteins. Proc Natl Acad Sci U S A 108:E201–E210. doi:10.1073/pnas.1101929108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xia T, Li N, Fang X (2013) Single-molecule fluorescence imaging in living cells. Annu Rev Phys Chem 64:459–480. doi:10.1146/annurev-physchem-040412-110127

    Article  CAS  PubMed  Google Scholar 

  27. Myong S, Ha T (2010) Stepwise translocation of nucleic acid motors. Curr Opin Struct Biol 20:121–127. doi:10.1016/j.sbi.2009.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tinoco I, Gonzalez RL (2011) Biological mechanisms, one molecule at a time. Genes Dev 25:1205–1231. doi:10.1101/gad.2050011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bustamante C, Cheng W, Mejia YX, Meija YX (2011) Revisiting the central dogma one molecule at a time. Cell 144:480–497. doi:10.1016/j.cell.2011.01.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shi J, Dertouzos J, Gafni A, Steel D (2008) Application of single-molecule spectroscopy in studying enzyme kinetics and mechanism. Methods Enzymol 450:129–157. doi:10.1016/S0076-6879(08)03407-1

    Article  CAS  PubMed  Google Scholar 

  31. Min W, Jiang L, Xie XS (2010) Complex kinetics of fluctuating enzymes: phase diagram characterization of a minimal kinetic scheme. Chem Asian J 5:1129–1138. doi:10.1002/asia.200900627

    Article  CAS  PubMed  Google Scholar 

  32. Lu HP, Xun L, Xie XS (1998) Single-molecule enzymatic dynamics. Science 282:1877–1882

    Article  CAS  PubMed  Google Scholar 

  33. Walter NG, Huang C, Manzo AJ, Sobhy MA (2008) Do-it-yourself guide: how to use the modern single-molecule toolkit. Nat Methods 5:475–489. doi:10.1038/NMETH.1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aitken CE, Marshall RA, Puglisi JD (2008) An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J 94:1826–1835. doi:10.1529/biophysj.107.117689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vogelsang J, Kasper R, Steinhauer C et al (2008) A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew Chem Int Ed Engl 47:5465–5469. doi:10.1002/anie.200801518

    Article  CAS  PubMed  Google Scholar 

  36. Rasnik I, Mckinney SA, Ha T (2006) Nonblinking and long- lasting single-molecule fluorescence imaging. Nat Methods 3:891–893. doi:10.1038/NMETH934

    Article  CAS  PubMed  Google Scholar 

  37. Dave R, Terry DS, Munro JB, Blanchard SC (2009) Mitigating unwanted photophysical processes for improved single-molecule fluorescence imaging. Biophys J 96:2371–2381. doi:10.1016/j.bpj.2008.11.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Levene MJ, Korlach J, Turner SW et al (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299:682–686. doi:10.1126/science.1079700

    Article  CAS  PubMed  Google Scholar 

  39. Leslie SR, Fields AP, Cohen AE (2010) Convex lens-induced confinement for imaging single molecules. Anal Chem 82:6224–6229. doi:10.1021/ac101041s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Elting MW, Leslie SR, Churchman LS et al (2013) Single-molecule fluorescence imaging of processive myosin with enhanced background suppression using linear zero-mode waveguides (ZMWs) and convex lens induced confinement (CLIC). Opt Express 21:1189–1202. doi:10.1364/OE.21.001189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Uemura S, Aitken CE, Korlach J et al (2010) Real-time tRNA transit on single translating ribosomes at codon resolution. Nature 464:1012–1017. doi:10.1038/nature08925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Petrov A, Kornberg G, O’Leary S et al (2011) Dynamics of the translational machinery. Curr Opin Struct Biol 21:137–145. doi:10.1016/j.sbi.2010.11.007

    Article  CAS  PubMed  Google Scholar 

  43. Chen J, Dalal RV, Petrov AN et al (2013) High-throughput platform for real-time monitoring of biological processes by multicolor single-molecule fluorescence. Proc Natl Acad Sci U S A 111(2):664–669. doi:10.1073/pnas.1315735111/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1315735111

    Article  PubMed  PubMed Central  Google Scholar 

  44. Axelrod D (2003) Total internal reflection fluorescence microscopy in cell biology. Methods Enzymol 361:1–33

    Article  CAS  PubMed  Google Scholar 

  45. Axelrod D (2013) Evanescent excitation and emission in fluorescence microscopy. Biophys J 104:1401–1409. doi:10.1016/j.bpj.2013.02.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tokunaga M, Imamoto N, Sakata-sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5:159–161. doi:10.1038/NMETH.1171

    Article  CAS  PubMed  Google Scholar 

  47. Pitchiaya S, Androsavich JR, Walter NG (2012) Intracellular single molecule microscopy reveals two kinetically distinct pathways for microRNA assembly. EMBO Rep 13:709–715. doi:10.1038/embor.2012.85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pitchiaya S, Krishnan V, Custer TC, Walter NG (2013) Dissecting non-coding RNA mechanisms in cellulo by single-molecule high-resolution localization and counting. Methods 63:188–199. doi:10.1016/j.ymeth.2013.05.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hermanson GT (2008) Bioconjugation techniques. Acad Press 10:0123705010. doi: 10.1007/s00216-009-2731-y

    Google Scholar 

  50. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5:507–516. doi:10.1038/nmeth.1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ghaemmaghami S, Huh W-K, Bower K et al (2003) Global analysis of protein expression in yeast. Nature 425:737–741. doi:10.1038/nature02046

    Article  CAS  PubMed  Google Scholar 

  52. Remington SJ (2006) Fluorescent proteins: maturation, photochemistry and photophysics. Curr Opin Struct Biol 16:714–721. doi:10.1016/j.sbi.2006.10.001

    Article  CAS  PubMed  Google Scholar 

  53. Stepanenko OV, Stepanenko OV, Shcherbakova DM et al (2011) Modern fluorescent proteins: from chromophore formation to novel intracellular applications. Biotechniques 51:313–314. doi:10.2144/000113765, 316, 318 passim

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ha T, Tinnefeld P (2012) Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu Rev Phys Chem 63:595–617. doi:10.1146/annurev-physchem-032210-103340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shcherbakova DM, Verkhusha VV (2013) Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Methods 10:751–754. doi:10.1038/nmeth.2521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Juillerat A, Gronemeyer T, Keppler A et al (2003) Directed evolution of O6-alkylguanine-DNA alkyltransferase for efficient labeling of fusion proteins with small molecules in vivo. Chem Biol 10:313–317

    Article  CAS  PubMed  Google Scholar 

  57. Gautier A, Juillerat A, Heinis C et al (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15:128–136. doi:10.1016/j.chembiol.2008.01.007

    Article  CAS  PubMed  Google Scholar 

  58. Sun X, Zhang A, Baker B et al (2011) Development of SNAP-tag fluorogenic probes for wash-free fluorescence imaging. Chembiochem 12:2217–2226. doi:10.1002/cbic.201100173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Los GV, Encell LP, McDougall MG et al (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382. doi:10.1021/cb800025k

    Article  CAS  PubMed  Google Scholar 

  60. Los GV, Wood K (2007) The HaloTag: a novel technology for cell imaging and protein analysis. Methods Mol Biol 356:195–208

    CAS  PubMed  Google Scholar 

  61. Miller LW, Cai Y, Sheetz MP, Cornish VW (2005) In Vivo protein labeling with trimethoprim conjugates a flexible chemical tag. Nat Methods 2:255–257. doi:10.1038/NMETH749

    Article  CAS  PubMed  Google Scholar 

  62. Calloway NT, Choob M, Sanz A et al (2007) Optimized fluorescent trimethoprim derivatives for in vivo protein labeling. Chembiochem 8:767–774. doi:10.1002/cbic.200600414

    Article  CAS  PubMed  Google Scholar 

  63. Floyd DL, Harrison SC, van Oijen AM (2010) Analysis of kinetic intermediates in single-particle dwell-time distributions. Biophys J 99:360–366. doi:10.1016/j.bpj.2010.04.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Moffitt JR, Chemla YR, Bustamante C (2010) Methods in statistical kinetics. Methods Enzymol 475:221–257. doi:10.1016/S0076-6879(10)75010-2

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa J. Moore Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Serebrov, V., Moore, M.J. (2016). Single Molecule Approaches in RNA-Protein Interactions. In: Yeo, G. (eds) RNA Processing. Advances in Experimental Medicine and Biology, vol 907. Springer, Cham. https://doi.org/10.1007/978-3-319-29073-7_4

Download citation

Publish with us

Policies and ethics