Modelling-based Teaching in Science Education pp 149-169 | Cite as
Analogies in Modelling-Based Teaching and Learning
- 1 Citations
- 1.3k Downloads
Abstract
The creation and use of analogies play important roles in modelling. An analogy is created when some aspects of an unknown target are compared with those of a source about which more is known. The drawing of an analogy between a target and a source involves following a series of steps, the nature of the possible relationship being bounded by a series of requirements and constraints. Suitable analogies, once created, play central roles in providing explanations for difficult models, acting asteaching models to promote the understanding of conceptually difficult target models. This role has been extensively investigated in science education. MBT provides an opportunity to introduce students to the creative role of analogies. A case study is presented on the creative use of analogy in each aspect of a modelling activity is facilitated by MBT. The teacher’s part in the operation of both these roles – explanatory and creative – is outlined.
Keywords
Target Domain Analogical Reasoning Base Domain Copper Sulphate Solution Explicit RequestReferences
- Aragón, M. M., Oliva-Martínez, J. M., & Navarrete, A. (2014). Contributions of learning through analogies to the construction of secondary education pupils’ verbal discourse about chemical change. International Journal of Science Education, 36(12), 1960–1984.CrossRefGoogle Scholar
- Aubusson, P. J., & Fogwill, S. (2006). Role play as analogical modelling in science. In P. J. Aubusson, A. G. Harrison, & S. M. Ritchie (Eds.), Metaphor and analogy in science education (pp. 93–104). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
- Brown, D. E. (1994). Facilitating conceptual change using analogies and explanatory models. International Journal of Science Education, 16(2), 201–214.CrossRefGoogle Scholar
- Brown, D. E., & Clement, J. J. (1989). Overcoming misconceptions via analogical reasoning: abstract transfer versus explanatory model construction. Instructional Science, 18, 237–261.CrossRefGoogle Scholar
- Chiu, M.-H., & Lin, J.-W. (2005). Promoting fourth graders’ conceptual change of their understanding of electric current via multiple analogies. Journal of Research in Science Teaching, 42(4), 429–464.CrossRefGoogle Scholar
- Clement, J. J. (1988). Observed methods for generating analogies in scientific problem solving. Cognitive Science, 12, 563–586.CrossRefGoogle Scholar
- Clement, J. J. (2008). Creative model construction in scientists and students - the role of imagery, analogy, and mental simulation. Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
- Cosgrove, M. (1995). A study of science-in-the-making as students generate an analogy for electricity. International Journal of Science Education, 17(3), 295–310.CrossRefGoogle Scholar
- Craig, D. L., Nersessian, N. J., & Catrambone, R. (2002). Perceptual simulation in analogical problem solving. In L. Magnani & N. J. Nersessian (Eds.), Model-based reasoning: Science, technology, values (pp. 167–189). New York, NY: Kluwer Academic and Plenum.CrossRefGoogle Scholar
- Curtis, R. V., & Reigeluth, C. M. (1984). The use of analogies in written text. Instructional Science, 13, 99–117.CrossRefGoogle Scholar
- Dagher, Z. R. (1994). Does the use of analogies contribute to conceptual change? Science Education, 78(6), 601–614.CrossRefGoogle Scholar
- Dagher, Z. R. (1995). Analysis of analogies used by science teachers. Journal of Research in Science Teaching, 32(3), 259–270.CrossRefGoogle Scholar
- Duit, R. (1991). On the role of analogies and metaphors in learning science. Science Education, 75(6), 649–672.CrossRefGoogle Scholar
- Duit, R., & Glynn, S. (1996). Mental modelling. In G. Welford, J. Osborne, & P. Scott (Eds.), Research in science education in Europe: Current issues and themes (pp. 166–176). London, UK: Falmer.Google Scholar
- Dunbar, K. (2000). How scientists think in the real world: Implications for science education. Journal of Applied Developmental Psychology, 21(1), 49–58.CrossRefGoogle Scholar
- Dunbar, K., & Blanchette, I. (2001). The in vivo/in vitro approach to cognition: The case of analogy. Trends in Cognitive Sciences, 5(8), 334–339.CrossRefGoogle Scholar
- Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7(2), 155–170.CrossRefGoogle Scholar
- Gentner, D. (2002). Analogy in scientific discovery: The case of Johannes Kepler. In L. Magnani & N. J. Nersessian (Eds.), Model-based reasoning: Science, technology, values (pp. 21–39). New York, NY: Kluwer Academic and Plenum.CrossRefGoogle Scholar
- Gentner, D., & Holyoak, K. J. (1997). Reasoning and learning by analogy. American Psychologist, 52(1), 32–34.CrossRefGoogle Scholar
- Gentner, D., & Markman, A. B. (1997). Structure mapping in analogy and similarity. American Psychologist, 52(1), 45–56.CrossRefGoogle Scholar
- Gilbert, J. K. (2004). Models and modelling: Routes to a more authentic science education. International Journal of Science and Mathematics Education, 2, 115–130.CrossRefGoogle Scholar
- Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education (pp. 3–17). Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar
- Glynn, S. M. (1991). Explaining science concepts: A teaching-with-analogies model. In S. M. Glynn, R. H. Yearny, & B. K. Britton (Eds.), The psychology of learning science (pp. 219–240). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
- Glynn, S. M., Britton, B. K., Semrud-Clikeman, M., & Muth, K. D. (1989). Analogical reasoning and problem solving in science textbooks. In J. A. Glover (Ed.), Handbook of creativity. New York, NY: Plenum Press.Google Scholar
- Glynn, S. M., Duit, R., & Thiele, R. B. (1995). Teaching science with analogies: A strategy for constructing knowledge. In S. Glynn & R. Duit (Eds.), Learning science in schools: Research reforming practice (pp. 247–273). Mahwah,NJ: Lawrence Erlbaum.Google Scholar
- Haglund, J. (2013). Collaborative and self-generated analogies in science education. Studies in Science Education, 49(1), 35–68.CrossRefGoogle Scholar
- Haglund, J., & Jeppsson, F. (2012). Using self-generated analogies in teaching of thermodynamics. Journal of Research in Science Teaching, 49(7), 898–921.CrossRefGoogle Scholar
- Haglund, J., & Jeppsson, F. (2014). Confronting conceptual challenges in thermodynamics by use of self-generated analogies. Science & Education, 23(7), 1505–1529.CrossRefGoogle Scholar
- Haglund, J., Jeppsson, F., & Andersson, J. (2012). Young children’s analogical reasoning in science domains. Science Education, 96(4), 725–756.CrossRefGoogle Scholar
- Harrison, A. G., & Coll, R. K. (Eds.). (2008). Using analogies in middle and secondary science classrooms. Thousand Oaks, CA: Corwin Press.Google Scholar
- Harrison, A. G., & Treagust, D. F. (1993). Teaching with analogies: A case study in grade-10 optics. Journal of Research in Science Teaching, 30(10), 1291–1307.CrossRefGoogle Scholar
- Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: A case study of multiple-model use in grade 11 chemistry. Science Education, 84(3), 352–381.CrossRefGoogle Scholar
- Harrison, A. G., & Treagust, D. F. (2006). Teaching and learning with analogies: Friend or foe? In P. Aubusson, A. Harrison, & S. M. Ritchie (Eds.), Metaphor and analogy in science education (pp. 11–24). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
- Hesse, M. (1966). Models and analogies in science. Notre Dame, IN: Notre Dame Press.Google Scholar
- Holyoak, K. J., & Thagard, P. (1989). Analogical mapping by constraint satisfaction. Cognitive Science, 13(3), 295–355.CrossRefGoogle Scholar
- James, M. C., & Scharmann, L. C. (2007). Using analogies to improve the teaching performance of preservice teachers. Journal of Research in Science Teaching, 44(4), 565–585.CrossRefGoogle Scholar
- Justi, R., & Gilbert, J. K. (1999). History and philosophy of science through models: The case of chemical kinetics. Science & Education, 8(3), 287–307.CrossRefGoogle Scholar
- Justi, R., & Gilbert, J. K. (2002a). Modelling, teachers’ views on the nature of modelling, implications for the education of modellers. International Journal of Science Education, 24(4), 369–387.CrossRefGoogle Scholar
- Justi, R., & Gilbert, J. K. (2002b). Science teachers’ knowledge about and attitudes towards the use of models and modelling in learning science. International Journal of Science Education, 24(12), 1273–1292.CrossRefGoogle Scholar
- Justi, R., & Gilbert, J. K. (2006). The role of analog models in the understanding of the nature of models in chemistry. In P. J. Aubusson, A. G. Harrison, & S. M. Ritchie (Eds.), Metaphor and analogy in science education (pp. 119–130). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
- Kaufman, D. R., Patel, V. L., & Magder, S. A. (1996). The explanatory role of spontaneously generated analogies in reasoning about physiological concepts. International Journal of Science Education, 18(3), 369–386.CrossRefGoogle Scholar
- Kind, P. M., & Kind, V. (2007). Creativity in science education: Perspectives and challenges for developing school science. Studies in Science Education, 43(1), 1–37.CrossRefGoogle Scholar
- Laidler, K. J. (1995). The world of physical chemistry (2nd ed.). Oxford, UK: Oxford University Press.Google Scholar
- Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago, IL: University of Chicago Press.Google Scholar
- Lancor, R. A. (2014). Using student-generated analogies to investigate conceptions of energy: A multidisciplinary study. International Journal of Science Education, 36(1), 1–23.CrossRefGoogle Scholar
- Lemke, J. L. (1990). Talking science: Language, learning and values. Norwood, NJ: Ablex.Google Scholar
- Maia, P. F., & Justi, R. (2009). Learning of chemical equilibrium through modelling-based teaching. International Journal of Science Education, 31(5), 603–630.CrossRefGoogle Scholar
- Mason, L. (1996). Collaborative reasoning on self-generated analogies: Conceptual growth in understanding scientific phenomena. Educational Research and Evaluation, 2(4), 309–350.CrossRefGoogle Scholar
- May, D. B., Hammer, D., & Roy, P. (2006). Children’s analogical reasoning in a third-grade science discussion. Science Education, 90(2), 316–329.CrossRefGoogle Scholar
- Mellor, J. W. (1904). Chemical statics and dynamics. London, UK: Longmans Green.Google Scholar
- Mendonça, P. C. C., & Justi, R. (2008). Usando Analogias com Função Criativa: Uma nova estratégia para o Ensino de Química (Using analogies with creative function: A new strategy for chemistry teaching). Educació Química, 1, 24–29.Google Scholar
- Mendonça, P. C. C., & Justi, R. (2011). Contributions of the Model of Modelling diagram to the learning of ionic bonding: Analysis of a case study. Research in Science Education, 41(4), 479–503.CrossRefGoogle Scholar
- Mozzer, N. B. (2013). O Entendimento Conceitual do Processo de Dissolução a partir da Elaboração de Modelos e sob a Perspectiva da Teoria de Campos Conceituais [Students’ conceptual understanding of dissolving in a modelling-based context and from the perspective of the theory of conceptual fields]. PhD thesis, Universidade Federal de Minas Gerais, Brazil.Google Scholar
- Mozzer, N. B., & Justi, R. (2009). Introdução ao Tema Dissolução através da Elaboração de Analogias pelos Alunos Fundamentada na Modelagem [Introduction to the topic dissolving from students’ drawing of analogies in a modelling-based teaching context]. Paper presented at the VII Encontro Nacional de Pesquisa em Educação em Ciências [VII Brazilian Conference on Research in Science Education], Florianópolis.Google Scholar
- Mozzer, N. B., & Justi, R. (2011). Students’ analogical reasoning when participating in modelling-based teaching activities. In C. Bruguière, A. Tiberghien, & P. Clément (Eds.), EBook proceedings of the ESERA 2011 conference - science learning and citizenship (pp. 764–769). Lyon, France: Université Lyon.Google Scholar
- Mozzer, N. B., & Justi, R. (2012). Students’ pre- and post-teaching analogical reasoning when they draw their analogies. International Journal of Science Education, 34(3), 429–458.CrossRefGoogle Scholar
- Mozzer, N. B., & Justi, R. (2013). Science teachers’ analogical reasoning. Research in Science Education, 43(4), 1689–1713.CrossRefGoogle Scholar
- Nersessian, N. J. (1992). How do scientists think? Capturing the dynamics of conceptual change in science. In R. N. Giere (Ed.), Cognitive models of science (pp. 3–44). Minneapolis, MN: University of Minnesota Press.Google Scholar
- Nersessian, N. J. (1999). Model-based reasoning in conceptual change. In L. Magnani, N. J. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 5–22). New York, NY: Kluwer and Plenum.CrossRefGoogle Scholar
- Nersessian, N. J. (2002). The cognitive basis of model-based reasoning in science. In P. Carruthers, S. Stich, & M. Siegal (Eds.), The cognitive basis of science (pp. 133–153). Cambridge, UK: Cambridge Univesity Press.CrossRefGoogle Scholar
- Nersessian, N. J. (2008). Creating scientific concepts. Cambridge, MA: MIT Press.Google Scholar
- Nersessian, N. J., & Chandrasekharan, S. (2009). Hybrid analogies in conceptual innovation in science. Cognitive Systems Research, 10(3), 178–188.CrossRefGoogle Scholar
- Niebert, K., Marsch, S., & Treagust, D. F. (2012). Understanding needs embodiment: A theory-guided reanalysis of the role of metaphors and analogies in understanding science. Science Education, 95(5), 849–877.CrossRefGoogle Scholar
- Oliva-Martínez, J. M., & Aragón, M. M. (2009a). Aportaciones de las analogías al desarrollo de pensamiento modelizador de los alumnos en química [Contribution of analogies to develop modeling thought of chemistry students]. Educacion Quimica, 20(1), 41–54.Google Scholar
- Oliva-Martínez, J. M., & Aragón, M. M. (2009b). Contribución del aprendizaje con analogías al pensamiento modelizador de los alumnos en Ciencias: Marco Teórico [Contribution of learning with analogies to the modeling thought of science students]. Enseñanza de las Ciencias, 27(2), 195–208.Google Scholar
- Oliva-Martínez, J. M., Aragón, M. M., Mateo, J., & Bonat, M. (2001). Una propuesta didáctica basada en la investigación para el uso de analogías en la enseñanza de las ciencias [A teaching proposal based on the investigation about the use of analogies in science education]. Enseñanza de las Ciencias, 19(3), 453–470.Google Scholar
- Oliva-Martínez, J. M., Azcárate, P., & Navarrete, A. (2007). Teaching models in the use of analogies as a resource in the science classroom. International Journal of Science Education, 29(1), 45–66.CrossRefGoogle Scholar
- Pittman, K. M. (1999). Student-generated analogies: Another way of knowing. Journal of Research in Science Teaching, 36(1), 1–22.CrossRefGoogle Scholar
- Spier-Dance, L., Mayer-Smith, J., Dance, N., & Khan, S. (2005). The role of student-generated analogies in promoting conceptual understanding for undergraduate chemistry students. Research in Science and Technological Education, 23(2), 163–178.CrossRefGoogle Scholar
- Thiele, R. B., & Treagust, D. F. (1995). Analogies in chemistry textbooks. International Journal of Science Education, 17(6), 783–795.CrossRefGoogle Scholar
- Treagust, D. F., Duit, R., Joslin, P., & Lindauer, I. (1992). Science teachers’ use of analogies: Observations from classroom practice. International Journal of Science Education, 14(4), 413–422.CrossRefGoogle Scholar
- Venville, G. J. (2008). Effective biology analogies. In A. G. Harrison & R. K. Coll (Eds.), Using analogies in middle and secondary science classrooms (pp. 82–126). Thousand Oaks, CA: Corwin Press.Google Scholar
- Vosniadou, S. (1989). Analogical reasoning as a mechanism in knowledge acquisition: A developmental perspective. In S. Vosniadou & A. Ortony (Eds.), Similarity and analogical reasoning (pp. 413–437). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
- Wilbers, J., & Duit, R. (2006). Post-festum and heuristic analogies. In P. J. Aubusson, A. G. Harrison, & S. M. Ritchie (Eds.), Metaphor and analogy in science education (pp. 37–49). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
- Wong, E. D. (1993). Understanding the generative capacity of analogies as a tool for explanation. Journal of Research in Science Teaching, 30(10), 1259–1272.CrossRefGoogle Scholar
- Zook, K. B. (1991). Effects of analogical processes on learning and misrepresentation. Educational Psychology Review, 3(1), 41–72.CrossRefGoogle Scholar