Advertisement

Analogies in Modelling-Based Teaching and Learning

  • John K. Gilbert
  • Rosária Justi
Chapter
Part of the Models and Modeling in Science Education book series (MMSE, volume 9)

Abstract

The creation and use of analogies play important roles in modelling. An analogy is created when some aspects of an unknown target are compared with those of a source about which more is known. The drawing of an analogy between a target and a source involves following a series of steps, the nature of the possible relationship being bounded by a series of requirements and constraints. Suitable analogies, once created, play central roles in providing explanations for difficult models, acting asteaching models to promote the understanding of conceptually difficult target models. This role has been extensively investigated in science education. MBT provides an opportunity to introduce students to the creative role of analogies. A case study is presented on the creative use of analogy in each aspect of a modelling activity is facilitated by MBT. The teacher’s part in the operation of both these roles – explanatory and creative – is outlined.

Keywords

Target Domain Analogical Reasoning Base Domain Copper Sulphate Solution Explicit Request 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aragón, M. M., Oliva-Martínez, J. M., & Navarrete, A. (2014). Contributions of learning through analogies to the construction of secondary education pupils’ verbal discourse about chemical change. International Journal of Science Education, 36(12), 1960–1984.CrossRefGoogle Scholar
  2. Aubusson, P. J., & Fogwill, S. (2006). Role play as analogical modelling in science. In P. J. Aubusson, A. G. Harrison, & S. M. Ritchie (Eds.), Metaphor and analogy in science education (pp. 93–104). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  3. Brown, D. E. (1994). Facilitating conceptual change using analogies and explanatory models. International Journal of Science Education, 16(2), 201–214.CrossRefGoogle Scholar
  4. Brown, D. E., & Clement, J. J. (1989). Overcoming misconceptions via analogical reasoning: abstract transfer versus explanatory model construction. Instructional Science, 18, 237–261.CrossRefGoogle Scholar
  5. Chiu, M.-H., & Lin, J.-W. (2005). Promoting fourth graders’ conceptual change of their understanding of electric current via multiple analogies. Journal of Research in Science Teaching, 42(4), 429–464.CrossRefGoogle Scholar
  6. Clement, J. J. (1988). Observed methods for generating analogies in scientific problem solving. Cognitive Science, 12, 563–586.CrossRefGoogle Scholar
  7. Clement, J. J. (2008). Creative model construction in scientists and students - the role of imagery, analogy, and mental simulation. Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  8. Cosgrove, M. (1995). A study of science-in-the-making as students generate an analogy for electricity. International Journal of Science Education, 17(3), 295–310.CrossRefGoogle Scholar
  9. Craig, D. L., Nersessian, N. J., & Catrambone, R. (2002). Perceptual simulation in analogical problem solving. In L. Magnani & N. J. Nersessian (Eds.), Model-based reasoning: Science, technology, values (pp. 167–189). New York, NY: Kluwer Academic and Plenum.CrossRefGoogle Scholar
  10. Curtis, R. V., & Reigeluth, C. M. (1984). The use of analogies in written text. Instructional Science, 13, 99–117.CrossRefGoogle Scholar
  11. Dagher, Z. R. (1994). Does the use of analogies contribute to conceptual change? Science Education, 78(6), 601–614.CrossRefGoogle Scholar
  12. Dagher, Z. R. (1995). Analysis of analogies used by science teachers. Journal of Research in Science Teaching, 32(3), 259–270.CrossRefGoogle Scholar
  13. Duit, R. (1991). On the role of analogies and metaphors in learning science. Science Education, 75(6), 649–672.CrossRefGoogle Scholar
  14. Duit, R., & Glynn, S. (1996). Mental modelling. In G. Welford, J. Osborne, & P. Scott (Eds.), Research in science education in Europe: Current issues and themes (pp. 166–176). London, UK: Falmer.Google Scholar
  15. Dunbar, K. (2000). How scientists think in the real world: Implications for science education. Journal of Applied Developmental Psychology, 21(1), 49–58.CrossRefGoogle Scholar
  16. Dunbar, K., & Blanchette, I. (2001). The in vivo/in vitro approach to cognition: The case of analogy. Trends in Cognitive Sciences, 5(8), 334–339.CrossRefGoogle Scholar
  17. Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7(2), 155–170.CrossRefGoogle Scholar
  18. Gentner, D. (2002). Analogy in scientific discovery: The case of Johannes Kepler. In L. Magnani & N. J. Nersessian (Eds.), Model-based reasoning: Science, technology, values (pp. 21–39). New York, NY: Kluwer Academic and Plenum.CrossRefGoogle Scholar
  19. Gentner, D., & Holyoak, K. J. (1997). Reasoning and learning by analogy. American Psychologist, 52(1), 32–34.CrossRefGoogle Scholar
  20. Gentner, D., & Markman, A. B. (1997). Structure mapping in analogy and similarity. American Psychologist, 52(1), 45–56.CrossRefGoogle Scholar
  21. Gilbert, J. K. (2004). Models and modelling: Routes to a more authentic science education. International Journal of Science and Mathematics Education, 2, 115–130.CrossRefGoogle Scholar
  22. Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education (pp. 3–17). Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar
  23. Glynn, S. M. (1991). Explaining science concepts: A teaching-with-analogies model. In S. M. Glynn, R. H. Yearny, & B. K. Britton (Eds.), The psychology of learning science (pp. 219–240). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  24. Glynn, S. M., Britton, B. K., Semrud-Clikeman, M., & Muth, K. D. (1989). Analogical reasoning and problem solving in science textbooks. In J. A. Glover (Ed.), Handbook of creativity. New York, NY: Plenum Press.Google Scholar
  25. Glynn, S. M., Duit, R., & Thiele, R. B. (1995). Teaching science with analogies: A strategy for constructing knowledge. In S. Glynn & R. Duit (Eds.), Learning science in schools: Research reforming practice (pp. 247–273). Mahwah,NJ: Lawrence Erlbaum.Google Scholar
  26. Haglund, J. (2013). Collaborative and self-generated analogies in science education. Studies in Science Education, 49(1), 35–68.CrossRefGoogle Scholar
  27. Haglund, J., & Jeppsson, F. (2012). Using self-generated analogies in teaching of thermodynamics. Journal of Research in Science Teaching, 49(7), 898–921.CrossRefGoogle Scholar
  28. Haglund, J., & Jeppsson, F. (2014). Confronting conceptual challenges in thermodynamics by use of self-generated analogies. Science & Education, 23(7), 1505–1529.CrossRefGoogle Scholar
  29. Haglund, J., Jeppsson, F., & Andersson, J. (2012). Young children’s analogical reasoning in science domains. Science Education, 96(4), 725–756.CrossRefGoogle Scholar
  30. Harrison, A. G., & Coll, R. K. (Eds.). (2008). Using analogies in middle and secondary science classrooms. Thousand Oaks, CA: Corwin Press.Google Scholar
  31. Harrison, A. G., & Treagust, D. F. (1993). Teaching with analogies: A case study in grade-10 optics. Journal of Research in Science Teaching, 30(10), 1291–1307.CrossRefGoogle Scholar
  32. Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: A case study of multiple-model use in grade 11 chemistry. Science Education, 84(3), 352–381.CrossRefGoogle Scholar
  33. Harrison, A. G., & Treagust, D. F. (2006). Teaching and learning with analogies: Friend or foe? In P. Aubusson, A. Harrison, & S. M. Ritchie (Eds.), Metaphor and analogy in science education (pp. 11–24). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  34. Hesse, M. (1966). Models and analogies in science. Notre Dame, IN: Notre Dame Press.Google Scholar
  35. Holyoak, K. J., & Thagard, P. (1989). Analogical mapping by constraint satisfaction. Cognitive Science, 13(3), 295–355.CrossRefGoogle Scholar
  36. James, M. C., & Scharmann, L. C. (2007). Using analogies to improve the teaching performance of preservice teachers. Journal of Research in Science Teaching, 44(4), 565–585.CrossRefGoogle Scholar
  37. Justi, R., & Gilbert, J. K. (1999). History and philosophy of science through models: The case of chemical kinetics. Science & Education, 8(3), 287–307.CrossRefGoogle Scholar
  38. Justi, R., & Gilbert, J. K. (2002a). Modelling, teachers’ views on the nature of modelling, implications for the education of modellers. International Journal of Science Education, 24(4), 369–387.CrossRefGoogle Scholar
  39. Justi, R., & Gilbert, J. K. (2002b). Science teachers’ knowledge about and attitudes towards the use of models and modelling in learning science. International Journal of Science Education, 24(12), 1273–1292.CrossRefGoogle Scholar
  40. Justi, R., & Gilbert, J. K. (2006). The role of analog models in the understanding of the nature of models in chemistry. In P. J. Aubusson, A. G. Harrison, & S. M. Ritchie (Eds.), Metaphor and analogy in science education (pp. 119–130). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  41. Kaufman, D. R., Patel, V. L., & Magder, S. A. (1996). The explanatory role of spontaneously generated analogies in reasoning about physiological concepts. International Journal of Science Education, 18(3), 369–386.CrossRefGoogle Scholar
  42. Kind, P. M., & Kind, V. (2007). Creativity in science education: Perspectives and challenges for developing school science. Studies in Science Education, 43(1), 1–37.CrossRefGoogle Scholar
  43. Laidler, K. J. (1995). The world of physical chemistry (2nd ed.). Oxford, UK: Oxford University Press.Google Scholar
  44. Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago, IL: University of Chicago Press.Google Scholar
  45. Lancor, R. A. (2014). Using student-generated analogies to investigate conceptions of energy: A multidisciplinary study. International Journal of Science Education, 36(1), 1–23.CrossRefGoogle Scholar
  46. Lemke, J. L. (1990). Talking science: Language, learning and values. Norwood, NJ: Ablex.Google Scholar
  47. Maia, P. F., & Justi, R. (2009). Learning of chemical equilibrium through modelling-based teaching. International Journal of Science Education, 31(5), 603–630.CrossRefGoogle Scholar
  48. Mason, L. (1996). Collaborative reasoning on self-generated analogies: Conceptual growth in understanding scientific phenomena. Educational Research and Evaluation, 2(4), 309–350.CrossRefGoogle Scholar
  49. May, D. B., Hammer, D., & Roy, P. (2006). Children’s analogical reasoning in a third-grade science discussion. Science Education, 90(2), 316–329.CrossRefGoogle Scholar
  50. Mellor, J. W. (1904). Chemical statics and dynamics. London, UK: Longmans Green.Google Scholar
  51. Mendonça, P. C. C., & Justi, R. (2008). Usando Analogias com Função Criativa: Uma nova estratégia para o Ensino de Química (Using analogies with creative function: A new strategy for chemistry teaching). Educació Química, 1, 24–29.Google Scholar
  52. Mendonça, P. C. C., & Justi, R. (2011). Contributions of the Model of Modelling diagram to the learning of ionic bonding: Analysis of a case study. Research in Science Education, 41(4), 479–503.CrossRefGoogle Scholar
  53. Mozzer, N. B. (2013). O Entendimento Conceitual do Processo de Dissolução a partir da Elaboração de Modelos e sob a Perspectiva da Teoria de Campos Conceituais [Students’ conceptual understanding of dissolving in a modelling-based context and from the perspective of the theory of conceptual fields]. PhD thesis, Universidade Federal de Minas Gerais, Brazil.Google Scholar
  54. Mozzer, N. B., & Justi, R. (2009). Introdução ao Tema Dissolução através da Elaboração de Analogias pelos Alunos Fundamentada na Modelagem [Introduction to the topic dissolving from students’ drawing of analogies in a modelling-based teaching context]. Paper presented at the VII Encontro Nacional de Pesquisa em Educação em Ciências [VII Brazilian Conference on Research in Science Education], Florianópolis.Google Scholar
  55. Mozzer, N. B., & Justi, R. (2011). Students’ analogical reasoning when participating in modelling-based teaching activities. In C. Bruguière, A. Tiberghien, & P. Clément (Eds.), EBook proceedings of the ESERA 2011 conference - science learning and citizenship (pp. 764–769). Lyon, France: Université Lyon.Google Scholar
  56. Mozzer, N. B., & Justi, R. (2012). Students’ pre- and post-teaching analogical reasoning when they draw their analogies. International Journal of Science Education, 34(3), 429–458.CrossRefGoogle Scholar
  57. Mozzer, N. B., & Justi, R. (2013). Science teachers’ analogical reasoning. Research in Science Education, 43(4), 1689–1713.CrossRefGoogle Scholar
  58. Nersessian, N. J. (1992). How do scientists think? Capturing the dynamics of conceptual change in science. In R. N. Giere (Ed.), Cognitive models of science (pp. 3–44). Minneapolis, MN: University of Minnesota Press.Google Scholar
  59. Nersessian, N. J. (1999). Model-based reasoning in conceptual change. In L. Magnani, N. J. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 5–22). New York, NY: Kluwer and Plenum.CrossRefGoogle Scholar
  60. Nersessian, N. J. (2002). The cognitive basis of model-based reasoning in science. In P. Carruthers, S. Stich, & M. Siegal (Eds.), The cognitive basis of science (pp. 133–153). Cambridge, UK: Cambridge Univesity Press.CrossRefGoogle Scholar
  61. Nersessian, N. J. (2008). Creating scientific concepts. Cambridge, MA: MIT Press.Google Scholar
  62. Nersessian, N. J., & Chandrasekharan, S. (2009). Hybrid analogies in conceptual innovation in science. Cognitive Systems Research, 10(3), 178–188.CrossRefGoogle Scholar
  63. Niebert, K., Marsch, S., & Treagust, D. F. (2012). Understanding needs embodiment: A theory-guided reanalysis of the role of metaphors and analogies in understanding science. Science Education, 95(5), 849–877.CrossRefGoogle Scholar
  64. Oliva-Martínez, J. M., & Aragón, M. M. (2009a). Aportaciones de las analogías al desarrollo de pensamiento modelizador de los alumnos en química [Contribution of analogies to develop modeling thought of chemistry students]. Educacion Quimica, 20(1), 41–54.Google Scholar
  65. Oliva-Martínez, J. M., & Aragón, M. M. (2009b). Contribución del aprendizaje con analogías al pensamiento modelizador de los alumnos en Ciencias: Marco Teórico [Contribution of learning with analogies to the modeling thought of science students]. Enseñanza de las Ciencias, 27(2), 195–208.Google Scholar
  66. Oliva-Martínez, J. M., Aragón, M. M., Mateo, J., & Bonat, M. (2001). Una propuesta didáctica basada en la investigación para el uso de analogías en la enseñanza de las ciencias [A teaching proposal based on the investigation about the use of analogies in science education]. Enseñanza de las Ciencias, 19(3), 453–470.Google Scholar
  67. Oliva-Martínez, J. M., Azcárate, P., & Navarrete, A. (2007). Teaching models in the use of analogies as a resource in the science classroom. International Journal of Science Education, 29(1), 45–66.CrossRefGoogle Scholar
  68. Pittman, K. M. (1999). Student-generated analogies: Another way of knowing. Journal of Research in Science Teaching, 36(1), 1–22.CrossRefGoogle Scholar
  69. Spier-Dance, L., Mayer-Smith, J., Dance, N., & Khan, S. (2005). The role of student-generated analogies in promoting conceptual understanding for undergraduate chemistry students. Research in Science and Technological Education, 23(2), 163–178.CrossRefGoogle Scholar
  70. Thiele, R. B., & Treagust, D. F. (1995). Analogies in chemistry textbooks. International Journal of Science Education, 17(6), 783–795.CrossRefGoogle Scholar
  71. Treagust, D. F., Duit, R., Joslin, P., & Lindauer, I. (1992). Science teachers’ use of analogies: Observations from classroom practice. International Journal of Science Education, 14(4), 413–422.CrossRefGoogle Scholar
  72. Venville, G. J. (2008). Effective biology analogies. In A. G. Harrison & R. K. Coll (Eds.), Using analogies in middle and secondary science classrooms (pp. 82–126). Thousand Oaks, CA: Corwin Press.Google Scholar
  73. Vosniadou, S. (1989). Analogical reasoning as a mechanism in knowledge acquisition: A developmental perspective. In S. Vosniadou & A. Ortony (Eds.), Similarity and analogical reasoning (pp. 413–437). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  74. Wilbers, J., & Duit, R. (2006). Post-festum and heuristic analogies. In P. J. Aubusson, A. G. Harrison, & S. M. Ritchie (Eds.), Metaphor and analogy in science education (pp. 37–49). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  75. Wong, E. D. (1993). Understanding the generative capacity of analogies as a tool for explanation. Journal of Research in Science Teaching, 30(10), 1259–1272.CrossRefGoogle Scholar
  76. Zook, K. B. (1991). Effects of analogical processes on learning and misrepresentation. Educational Psychology Review, 3(1), 41–72.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • John K. Gilbert
    • 1
  • Rosária Justi
    • 2
  1. 1.The University of ReadingBerkshireUK
  2. 2.Universidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations