The Contribution of Visualisation to Modelling-Based Teaching

  • John K. Gilbert
  • Rosária Justi
Part of the Models and Modeling in Science Education book series (MMSE, volume 9)


Both the creation of models and their communication to other people involve visualisations. These are, respectively, ‘internal’ (or mental) and ‘external’ (or public) representations, with the latter confusingly also being called visualisations. Perceptions by one of the five senses provide external representations. The modes of external representation of particular importance in science education are the: gestural, concrete, static visual (pictures, diagrams, graphs, mathematical and chemical equations), dynamic visual (drama, animation, simulation), oral and auditory. The skills and abilities that constitute meta-visual competence in the modes are reviewed in this chapter, for they enable the central element of modelling – the design and conduct of thought experiments – to take place. Consequently, the skills and abilities of both modelling and of visualisation are mutually developed and employed during MBT.


Science Education Cognitive Load Thought Experiment External Representation Chemical Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 3D Printing. (2015). What is 3D printing? Retrieved March, 2015, from
  2. Ainsworth, S. (2008). How do animations influence learning? In D. H. Robinson & G. Schraw (Eds.), Recent innovations in educational technology that facilitate student learning (pp. 37–67). Charlotte, NC: Information Age Publishing.Google Scholar
  3. Blackwell, A. F., & Engelhardt, Y. (1998). A taxonomy of diagram taxonomies. Paper presented at the thinking with diagrams 98: Is there a science of diagrams?Google Scholar
  4. Bloom, B. S. (1956). A taxonomy of educational objectives. New York: David McKay.Google Scholar
  5. Blum, W., & Leiß, D. (2007). How do students and teachers deal with modeling problems. In C. Haines, P. Galbraith, W. VBlum, & S. Khan (Eds.), Mathematical modelling: Education, engineering and economics (pp. 222–231). Chichester, UK: Horwood Publishing.CrossRefGoogle Scholar
  6. Brown, J. (1991). The laboratory of the mind. London: Routledge.Google Scholar
  7. Burges, D. (1980). Teaching applications of mathematics: Mathematical modelling in science and technology. European Journal of Science Education, 2(4), 365–376.CrossRefGoogle Scholar
  8. Cassels, J., & Johnstone, A. (1985). Words that matter in science. London: Royal Society of Chemistry.Google Scholar
  9. Di Fuccia, D. (2013). Mathematical models in chemistry lessons. Paper presented at the X Conference of the European Science Education Research Association, Nicosia, Cyprus.Google Scholar
  10. diSessa, A. A. (2004). Metarepresentation: Native competence and targets for instruction. Cognition and Instruction, 22(3), 293–331.CrossRefGoogle Scholar
  11. Dori, Y. J., Rodrigues, S., & Schanze, S. (2013). How to promote chemistry learning through the use of ICT. In I. Eilks & A. Hofstein (Eds.), Teaching chemistry: A studybook (pp. 213–240). Rotterdam: Sense.CrossRefGoogle Scholar
  12. Dorion, K. (2009). Science through drama: A multiple case exploration of the characteristics of drama activities used in secondary science lessons. International Journal of Science Education, 31(16), 2247–2270.CrossRefGoogle Scholar
  13. Eilam, B. (2012). Teaching, learning, and visual literacy. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  14. Ferrucci, B. J., & Carter, J. A. (2003). Technology-active mathematical modelling. International Journal of Mathematical Education in Science and Technology, 34(5), 663–670.CrossRefGoogle Scholar
  15. Francoeur, E. (1997). The forgotten tool: The design and use of molecular models. Social Studies of Science, 27, 7–40.CrossRefGoogle Scholar
  16. Gilbert, J. K. (2005). Visualization: A metacognitive skill in science and science education. In J. K. Gilbert (Ed.), Visualization in science education (pp. 9–27). Dordrecht, Netherlands: Springer.CrossRefGoogle Scholar
  17. Gilbert, J. K. (2008). Visualization: An emergent field of practice and enquiry in science education. In J. K. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: Theory and practice in science education (pp. 3–24). Dordrecht, Netherlands: Springer.CrossRefGoogle Scholar
  18. Gilbert, S. W. (2011). Models-based science teaching. Arlington, Virginia: NSTA Press.Google Scholar
  19. Gilbert, J. K., & Reiner, M. (2000). Thought experiments in science education: Potential and current realisation. International Journal of Science Education, 22(3), 265–283.CrossRefGoogle Scholar
  20. Gilbert, J. K., & Watts, D. M. (1983). Conceptions, misconceptions, and alternative conceptions: Changing perspectives in science education. Studies in Science Education, 10(1), 61–98.CrossRefGoogle Scholar
  21. Givry, D., & Roth, M.-W. (2006). Towards a new conception of conceptions: Interplay of talk, gestures and structures in the setting. Journal of Research in Science Teaching, 14(10), 1096–1109.Google Scholar
  22. Goldin-Meadow, S. (2006). Nonverbal communication: The hand’s role in talking and thinking. In W. Damon & R. M. Lerner (Eds.), Handbook of child psychology (6th ed., Vol. 2, pp. 336–369). Hoboken, NJ: Wiley.Google Scholar
  23. Hand, B. M., Prain, V., Lawrence, C., & Yore, L. D. (1999). A writing in science framework designed to enhance scientific literacy. International Journal of Science Education, 21(10), 1021–1035.CrossRefGoogle Scholar
  24. Harvey, W. (1993). On the circulation of blood and other writings. London: Everyman Orion.Google Scholar
  25. Hayes, D., Symington, D., & Martin, M. (1994). Drawing during science activity in the primary school. International Journal of Science Education, 16(3), 265–277.CrossRefGoogle Scholar
  26. Hegarty, M., Carpenter, P., & Just, M. (1991). Diagrams in the comprehension of scientific texts. In R. K. Barr (Ed.), Handbook of reading research (Vol. 2, pp. 641–668). New York: Longman.Google Scholar
  27. Hegarty, M., & Waller, D. (2005). Individual differences in spatial abilities. In P. Shah & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking (pp. 121–169). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  28. Herrera, J. S., & Riggs, E. M. (2013). Relating gestures and speech: An analysis of students’ conceptions about geological sedimentary processes. International Journal of Science Education, 35(12), 1979–2003.CrossRefGoogle Scholar
  29. Hodson, D. (2009). Teaching and learning about science: Language, theories, methods, history, traditions and values. Rotterdam, Netherlands: Sense.Google Scholar
  30. IUPAC. (2014). Compendium of chemical terminology: Gold book. Washington, DC: IUPAC.Google Scholar
  31. Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of Chemical Education, 70(9), 701–705.CrossRefGoogle Scholar
  32. Justi, R., & Gilbert, J. K. (2002). Modelling, teachers’ views on the nature of modelling, implications for the education of modellers. International Journal of Science Education, 24(4), 369–387.CrossRefGoogle Scholar
  33. Kastens, K. A., Agrawal, S., & Liben, L. S. (2008). The role of gestures in geoscience teaching and learning. Journal of Geoscience Education, 56(4), 362–368.Google Scholar
  34. Kempe, A., & Ashwell, M. (2000). Progression in secondary drama. Harlow, UK: Pearson.Google Scholar
  35. Kind, V. (2004). Beyond appearances: Students’ misconceptions about basic chemical ideas (2nd ed.). London: Royal Society of Chemistry.Google Scholar
  36. Kosslyn, S. (2006). Graph design for the eye and mind. Oxford: Oxford University Press.CrossRefGoogle Scholar
  37. Kosslyn, S., Pinker, S., Smith, G., & Shwartz, S. (1982). On the demystification of mental imagery. In N. Block (Ed.), Imagery (pp. 131–150). Cambridge, MA: MIT Press.Google Scholar
  38. Kozma, R., & Russell, J. (2005). Students becoming chemists: Developing representational competence. In J. K. Gilbert (Ed.), Visualization in science education (pp. 121–146). Dordrecht, Netherlands: Springer.CrossRefGoogle Scholar
  39. Kuhn, T. S. (1996). The structure of scientific revolutions (3rd ed.). Chicago: University of Chicago Press.CrossRefGoogle Scholar
  40. Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago: University of Chicago Press.Google Scholar
  41. Lamon, S. J., Parker, W. A., & Houston, S. K. (Eds.). (2003). Mathematical modelling: A way of life. Chichester, UK: Horwood.Google Scholar
  42. Landriscina, F. (2013). Simulation and learning: A model-centered approach. New York: Springer.CrossRefGoogle Scholar
  43. Levin, J. R., & Mayer, R. E. (1993). Understanding illustrations in text. In B. K. Britton, A. Woodward, & M. Binkley (Eds.), Learning from textbooks: Theory and practice (pp. 95–113). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  44. Levin, J. R., Shriberg, I., & Berry, J. (1983). A concrete strategy to remembering abstract prose. American Educational Research Journal, 20(2), 277–290.CrossRefGoogle Scholar
  45. Liu, Y., Won, M., & Treagust, D. F. (2014). Secondary biology teachers’ use of different types of diagrams for different purpose. In B. Eilam & J. K. Gilbert (Eds.), Science teachers’ use of visual representations (pp. 103–121). Dordrecht, Netherlands: Springer.Google Scholar
  46. Loughran, J. (2014). Slowmation: A process of explicit visualization. In B. Eilam & J. K. Gilbert (Eds.), Science teachers’ use of visual representations (pp. 85–102). Dordrecht, Netherlands: Springer.Google Scholar
  47. Mayer, R. E., & Pilegard, C. (2005). Principles for managing essential processing in multimedia learning: Segmenting, pre-training, and modality principles. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 316–344). New York: Cambridge University Press.CrossRefGoogle Scholar
  48. McGregor, D. (2012). Dramatising science learning: Findings from a pilot study to re-invigorate elementary science pedagogy for five- to seven-year olds. International Journal of Science Education, 34(8), 1145–1165.CrossRefGoogle Scholar
  49. McNeill, D. (2005). Gesture and thought. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  50. Newcombe, N. S., & Learmonth, A. E. (2005). Development of spatial competence. In P. Shah & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking (pp. 213–256). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  51. Newcombe, N. S., & Stieff, M. (2012). Six myths about spatial thinking. International Journal of Science Education, 34(6), 955–971.CrossRefGoogle Scholar
  52. Niss, M. (1987). Applications of modelling in the mathematics curriculum: State and trends. International Journal of Mathematical Education in Science and Technology, 18(4), 487–505.CrossRefGoogle Scholar
  53. Niss, M. (2010). Modeling a crucial aspect of students’ mathematical modeling. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modeling competencies (pp. 43–59). New York: Springer.CrossRefGoogle Scholar
  54. Padalkar, S., & Ramadas, J. (2011). Designed and spontaneous gestures in elementary astronomy education. International Journal of Science Education, 33(12), 1703–1739.CrossRefGoogle Scholar
  55. Parnafes, O., & Trachtenberg-Maslaton, R. (2014). Transforming instruction: Teaching in a student-generated representations learning environment. In B. Eilam & J. K. Gilbert (Eds.), Science teachers’ use of visual representations (pp. 271–290). Dordrecht, Netherlands: Springer.Google Scholar
  56. Paton, R. (1990). Bird wings and matrices. Journal of Biological Education, 24(4), 273–276.CrossRefGoogle Scholar
  57. Paton, R. (1991a). An application of mathematical modelling to school biotechnology. International Journal of Mathematical Education in Science and Technology, 22(2), 291–296.CrossRefGoogle Scholar
  58. Paton, R. (1991b). Modelling biological processes using simple matrices. Journal of Biological Education, 25(1), 37–43.CrossRefGoogle Scholar
  59. Pozzer, L. L., & Roth, M.-W. (2003). Prevalence, function, and structure of photographs in high school biology textbooks. Journal of Research in Science Teaching, 40(10), 1089–1114.CrossRefGoogle Scholar
  60. Prain, V., & Tytler, R. (2012). Learning through constructing representations in science: A framework of representation construction affordances. International Journal of Science Education, 34(17), 2751–2773.CrossRefGoogle Scholar
  61. Reiner, M. (1998). Thought experiments and collaborative learning in physics. International Journal of Science Education, 20(9), 1043–1059.CrossRefGoogle Scholar
  62. Roth, M.-W., & Welzel, M. (2001). From activity to gestures and scientific language. Journal of Research in Science Teaching, 38(1), 103–136.CrossRefGoogle Scholar
  63. Rothbart, D. (Ed.). (2004). Modeling: Gateway to the unknown: A work by Rom Harré. Amsterdam: Elsevier.Google Scholar
  64. Royal Society of Chemistry. (2014). CPD for teachers. Retrieved July, 2014, from
  65. Savec, V. F., Vrtacnik, M., & Gilbert, J. K. (2005). Evaluating the educational value of molecular structure representations. In J. K. Gilbert (Ed.), Visualization in science education (pp. 269–297). Dordrecht, Netherlands: Springer.CrossRefGoogle Scholar
  66. Savory, C. (1976). A survey of cristal and molecular models. Education in Chemistry, 13, 136–141.Google Scholar
  67. Scott, P., Asoko, H., & Leach, J. (2007). Students conceptions and conceptual learning in science. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research in science education (pp. 31–56). Mahwah, N.J.: Lawrence Erlbaum.Google Scholar
  68. Sorensen, R. (1992). Thought experiments. New York: Oxford University Press.Google Scholar
  69. Swetz, F. (1989). A Historical example of mathematical modelling: The trajectory of a cannonball. International Journal of Mathematical Education in Science and Technology, 20(5), 731–741.CrossRefGoogle Scholar
  70. Taber, K. S. (2002). Chemical misconceptions: Prevention, diagnosis and cure (Vol. 1). London: Royal Society of Chemistry.Google Scholar
  71. Taber, K. S. (2009). Learning at the symbolic level. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education (pp. 75–108). Dordrecht, Netherlands: Springer.CrossRefGoogle Scholar
  72. Talanquer, V. (2007). Explanation and teleology in chemical education. International Journal of Science Education, 29(7), 853–870.CrossRefGoogle Scholar
  73. Thomas, N. J. T. (2014). Mental imagery. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (Fall 2014 ed.). Stanford: Stanford University.
  74. Tuckey, H., & Selvaratnam, M. (1993). Studies involving three-dimensional visualisation skills in chemistry: A review. Studies in Science Education, 21, 99–121.CrossRefGoogle Scholar
  75. Tytler, R., Petersen, S., & Prain, V. (2006). Picturing evaporation: Learning science literacy through a particle representation. Teaching Science, 52(1), 12–17.Google Scholar
  76. Urhahne, D., Sabine, N., & Schanze, S. (2009). The effect of three-dimensional simulations on the understanding of chemical structures and their properties. Research in Science Education, 39(4), 495–513.CrossRefGoogle Scholar
  77. Voges, E., & Joubert, S. (2008). The singing wineglass: An exercise in mathematical modelling. International Journal of Mathematical Education in Science and Technology, 39(6), 725–739.CrossRefGoogle Scholar
  78. Waldrip, B., & Prain, V. (2012). Learning from and through representation in science. In B. J. Fraser, K. G. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (Vol. 2, pp. 145–156). Dordrecht, Netherlands: Springer.CrossRefGoogle Scholar
  79. Wellington, J., & Osborne, J. (2001). Language and literacy in science education. Buckingham, UK: Open University Press.Google Scholar
  80. Wilkes, K. V. (1988). Real people: Personal identity without thought experiments. Oxford: Oxford University Press.Google Scholar
  81. Willows, D. (1978). A picture is not always worth a thousand words: Pictures as distractors in reading. Journal of Educational Psychology, 70(2), 255–262.CrossRefGoogle Scholar
  82. Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletion and Review, 9(4), 625–636.CrossRefGoogle Scholar
  83. Winn, W. (1991). Learning from maps and diagrams. Educational Psychology Review, 3(3), 211–247.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • John K. Gilbert
    • 1
  • Rosária Justi
    • 2
  1. 1.The University of ReadingBerkshireUK
  2. 2.Universidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations