The Role of Argumentation in Modelling-Based Teaching

  • John K. Gilbert
  • Rosária Justi
Part of the Models and Modeling in Science Education book series (MMSE, volume 9)


The various stages in the modelling of a phenomenon involve the activity of argumentation. As the use of the Toulmin’s model of argumentation has been found to present problems in the analysis of data from science education research, a simpler model was adopted for use in the context of MBT. An analysis of the skills and abilities used in the various stages of argumentation is presented. This is followed by an analysis of the role of argumentation in the various stages of modelling. This relationship between argumentation and modelling is then presented as a series of diagrams. The value of particular modes of representation in the conduct of argumentation during modelling is then discussed. Finally, the implications of these matters for teachers’ support of modelling are discussed.


Modelling Stage Concrete Model Argumentative Discourse Epistemic Practice Verbal Argumentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allchin, D. (2011). Evaluating knowledge of the nature of (whole) science. Science Education, 95(3), 518–542.CrossRefGoogle Scholar
  2. Baker, M. (2009). Argumentative interactions and the social construction of knowledge. In N. M. Mirza & A.-N. Perret-Clermont (Eds.), Argumentation and education: Theoretical foundations and practices (pp. 127–144). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  3. Bell, P., & Linn, M. (2002). Scientific arguments as learning artifacts: Designing for learning from the web with KIE. International Journal of Science Education, 22(8), 797–817.CrossRefGoogle Scholar
  4. Berland, L. K., & Reiser, B. J. (2009). Making sense of argumentation and explanation. Science Education, 93(1), 26–55.CrossRefGoogle Scholar
  5. Böttcher, F., & Meisert, A. (2011). Argumentation in science education: A model-based framework. Science & Education, 20(2), 103–140.CrossRefGoogle Scholar
  6. Bravo, B., Puig, B., & Jiménez-Aleixandre, M. P. (2009). Competencias en el uso de pruebas en argumentación [Competence in the use of scientific evidence in argumentation]. Educacion Quimica, 20(2), 126–131.Google Scholar
  7. Cambrosio, A., Jacobi, D., & Keating, P. (2006). Arguing with Images: Pauling’s theory of antibody formation. In L. Pauwels (Ed.), Visual cultures of science: Rethinking representational practices in knowledge building and science communication (pp. 153–194). Hanover, New Hampshire: Dartmoutn College Press.Google Scholar
  8. Chin, C., & Osborne, J. (2010). Students’ questions and discursive interactions: Their impact on argumentation during collaborative group discussions in science. Journal of Research in Science Teaching, 47(7), 883–908.CrossRefGoogle Scholar
  9. Cross, D., Taasoobshirazi, G., Hendricks, S., & Hickey, D. (2008). Argumentation: A strategy for improving achievement and revealing scientific identities. International Journal of Science Education, 30(6), 837–861.CrossRefGoogle Scholar
  10. Deng, F., Chen, D.-T., Tsai, C.-C., & Chai, C. S. (2011). Students’ views of the nature of science: A critical review of research. Science Education, 95(6), 961–999.CrossRefGoogle Scholar
  11. Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287–312.CrossRefGoogle Scholar
  12. Duschl, R. (2008a). Quality argumentation and epistemic criteria. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 159–175). Dordrecht, The Netherlands: Springer.Google Scholar
  13. Duschl, R. (2008b). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of Research in Education, 32(1), 268–291.CrossRefGoogle Scholar
  14. Duschl, R., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38, 39–72.CrossRefGoogle Scholar
  15. Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: Developments in the application of Toulmin’s argument pattern for studying discourse. Science Education, 88(6), 915–933.CrossRefGoogle Scholar
  16. Hand, B. M., & Choi, A. (2010). Examining the impact of student use of multiple modal representations in constructing arguments in organic chemistry laboratory classes. Research in Science Education, 40(1), 29–44.CrossRefGoogle Scholar
  17. Hogan, K. (2000). Exploring a process view of students’ knowledge about the nature of science. Science Education, 84(1), 51–70.CrossRefGoogle Scholar
  18. Irwin, A. R. (2000). Historical case studies: Teaching the nature of science in context. Science Education, 84(1), 5–26.CrossRefGoogle Scholar
  19. Jiménez-Aleixandre, M. P. (2010). 10 Ideas Clave: Competencias en argumentación y uso de pruebas [10 Key Ideas: Competences in argumentations and use of evidence]. Barcelona, Spain: Graó.Google Scholar
  20. Jiménez-Aleixandre, M. P., & Erduran, S. (2008). Argumentation in science education: An overview. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education - perspectives from classroom-based research (pp. 3–27). Dordrecht, The Netherlands: Springer.Google Scholar
  21. Jiménez-Aleixandre, M. P., & Pereiro Muñoz, C. (2002). Knowledge producers or knowledge consumers? Argumentation and decision making about environmental mangement. International Journal of Science Education, 24(11), 1171–1190.CrossRefGoogle Scholar
  22. Justi, R. (2015). Relações entre Argumentação e Modelagem no Contexto da Ciência e do Ensino de Ciências [Relations between argumentation and modelling in science and science education contexts]. Ensaio: Pesquisa em Educação em Ciências [Essays on Science Education Research], 17(Especial), 31–48.Google Scholar
  23. Kelly, G., Druker, S., & Chen, C. (1998). Students’ reasoning about electricity: Combining performance assessments with argumentation analysis. International Journal of Science Education, 20(7), 849–871.CrossRefGoogle Scholar
  24. Kuhn, D. (1991). The skills of argument. New York, NY: Cambridge University.CrossRefGoogle Scholar
  25. Kuhn, D. (2010). Teaching and learning science as argument. Science Education, 94(5), 810–824.CrossRefGoogle Scholar
  26. Latour, B., & Woolgar, S. (1986). Laboratory life: The construction of scientific facts. Princeton, NJ: Princeton University Press.Google Scholar
  27. Lehrer, R., & Schauble, L. (2005). Developing modeling and argument in elementary grades. In T. A. Romberg, T. P. Carpenter, & F. Dremock (Eds.), Understanding mathematics and science matters (pp. 29–53). Mahwah, N.J.: Erlbaum.Google Scholar
  28. Lemke, J. L. (1998). Multiplying meaning: Visual and verbal semiotics in scientific text. In J. R. Martin & R. Veel (Eds.), Reading science: Critical and functional perspectives on discourses of science (pp. 87–113). New York, NY: Routledge.Google Scholar
  29. McDonald, C. V., & McRobbie, C. J. (2012). Utilising argumentation to teach nature of science. In B. J. Fraser, K. G. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (Vol. 2, pp. 969–986). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  30. Mendonça, P. C. C., & Justi, R. (2013a). Ensino-Aprendizagem de Ciências e Argumentação: Discussões e questões atuais [Science education and argumentation: Current discussions and questions]. Revista Brasileira de Pesquisa em Educação em Ciências [Brazilian Journal of Research in Science Education], 13(1), 187–216.Google Scholar
  31. Mendonça, P. C. C., & Justi, R. (2013b). The relationships between modelling and argumentation from the perspective of the Model of Modelling diagram. International Journal of Science Education, 35(14), 2007–2034.CrossRefGoogle Scholar
  32. Mendonça, P. C. C., & Justi, R. (2014). An instrument for analyzing arguments produced in modeling-based chemistry lessons. Journal of Research in Science Teaching, 51(2), 192–218.CrossRefGoogle Scholar
  33. Mendonça, P. C. C., & Justi, R. (2009). Proposição de um Instrumento para Avaliação de Habilidades Argumentativas - Parte I - Fundamentos teóricos [Production of an instrument to assess argumentative skills - Part 1 - Theoretical foundations]. Paper presented at the VII Encontro Nacional de Pesquisa em Educação em Ciências [VII Brazilian Conference on Research in Science Education], Florianópolis.Google Scholar
  34. Oliveira, D. K. B. S., Justi, R., & Mendonça, P. C. C. (2015). The use of representations and argumentative and explanatory situations. International Journal of Science Education, 37(9), 1402–1435.CrossRefGoogle Scholar
  35. Passmore, C. M., & Svoboda, J. (2012). Exploring opportunities for argumentation in modelling classrooms. International Journal of Science Education, 34(10), 1535–1554.CrossRefGoogle Scholar
  36. Sampson, V., & Clarke, D. (2008). Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Science Education, 92(3), 447–472.CrossRefGoogle Scholar
  37. Toulmin, S. (1958). The uses of argument. New York, NY: Cambridge University Press.Google Scholar
  38. Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941–967.CrossRefGoogle Scholar
  39. Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35–62.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • John K. Gilbert
    • 1
  • Rosária Justi
    • 2
  1. 1.The University of ReadingBerkshireUK
  2. 2.Universidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations