Advertisement

Models of Modelling

  • John K. Gilbert
  • Rosária Justi
Chapter
Part of the Models and Modeling in Science Education book series (MMSE, volume 9)

Abstract

The widely recognised importance of models in scientific practice suggests that they should have an equally important role in science education. The meanings attached to the word ‘model’ in the philosophical literature and the psychological literature leads to two canonical interpretations: the ‘models as representations’ view and the ‘models as epistemic artefacts’ view. The latter is argued as being the more educationally valuable of the two. The central role of analogy, thought experimentation, and argumentation, in the creation and validation of models – the act of modelling – is explored against a background of the philosophical and psychological literature on the theme. Ways in which models have been developed in educational contexts are then explored, leading to the presentation of the new version of the ‘Model of Modelling’ that is the basis of this book.

Keywords

Science Education Mental Model External Representation Semantic View Epistemic Practice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bailer-Jones, D. M. (1999). Tracing the development of models in the philosophy of science. In L. Magnani, N. J. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 23–40). New York, NY: Kluwer and Plenum.CrossRefGoogle Scholar
  2. Boumans, M. (1999). Built-in justifications. In M. S. Morgan & M. Morrison (Eds.), Models as mediators: Perspectives on natural and social science (pp. 66–96). Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  3. Cartwright, N. (1983). How the laws of physics lie? Oxford, UK: Clarendon.CrossRefGoogle Scholar
  4. Chandrasekharan, S., Nersessian, N. J., & Subramanian, V. (2012). Computational modeling: Is this the end of thought experiments in science? In M. Frappier, L. Meynell, & J. B. Brown (Eds.), Thought experiments in philosophy, science, and the arts (pp. 239–260). London, UK: Routledge.Google Scholar
  5. Clement, J. J. (1989). Learning via model construction and criticism: Protocol evidence on sources of creativity in science. In J. A. Glover, R. R. Ronning, & C. R. Reynolds (Eds.), Handbook of creativity (pp. 341–381). New York, NY: Plenum.CrossRefGoogle Scholar
  6. Clement, J. J., & Brown, D. E. (1989). Overcoming misconceptions via analogical reasoning: Abstract transfer versus explanatory model construction. Instructional Science, 18(4), 237–261.CrossRefGoogle Scholar
  7. Craik, K. (1943). The nature of explanation (1st ed.). Cambridge, UK: Cambridge University Press.Google Scholar
  8. Craik, K. (1967). The nature of explanation (2nd ed.). Cambridge, UK: Cambridge University Press.Google Scholar
  9. da Costa, N. C. A., & French, S. (2003). Science and partial truth. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
  10. Driver, R., Guesne, E., & Tiberghien, A. (1985). Children’s ideas and the learning of science. In R. Driver, E. Guesne, & A. Tiberghien (Eds.), Children’s ideas in science (pp. 1–9). Milton Keynes, UK: Open University Press.Google Scholar
  11. Frigg, R. (2010). Models and fiction. Synthese, 172(2), 251–268.CrossRefGoogle Scholar
  12. Frigg, R., & Hartmann, S. (2009). Models in science. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy. Stanford, CA: Stanford University.Google Scholar
  13. Gentner, D., & Stevens, A. L. (1983). Mental models. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  14. Giere, R. N. (1988). Explaining science: A cognitive approach. Chicago, IL/London, UK: University of Chicago Press.CrossRefGoogle Scholar
  15. Giere, R. N. (1999). Using models to represent reality. In L. Magnani, N. J. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 41–57). New York, NY: Kluwer and Plenum.CrossRefGoogle Scholar
  16. Giere, R. N. (2002). Models as parts of distributed cognitive systems. In L. Magnani & N. J. Nersessian (Eds.), Model-based reasoning: Science technology, values (pp. 227–241). New York, NY: Kluwer and Plenum.CrossRefGoogle Scholar
  17. Giere, R. N. (2004). How models are used to represent reality. Philosophy of Science, 71, 742–752.CrossRefGoogle Scholar
  18. Giere, R. N. (2010). An agent-based conception of models and scientific representation. Synthese, 172(2), 269–281.CrossRefGoogle Scholar
  19. Gilbert, J. K. (1993). Models & modelling in science education. Hatfield, UK: The Association for Science Education.Google Scholar
  20. Gilbert, J. K., & Boulter, C. J. (Eds.). (2000). Developing models in science education. Dordrecht, The Netherlands: Kluwer.Google Scholar
  21. Gilbert, J. K., Boulter, C. J., & Rutherford, M. (1998). Models in explanations, Part I: Horses for courses? International Journal of Science Education, 20(1), 83–97.CrossRefGoogle Scholar
  22. Gilbert, J. K., & Osborne, R. J. (1980). The use of models in science and science teaching. European Journal of Science Education, 2(1), 3–13.CrossRefGoogle Scholar
  23. Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799–822.CrossRefGoogle Scholar
  24. Halloun, I. A. (1996). Schematic modeling for meaningful learning of physics. Journal of Research in Science Teaching, 33(9), 1019–1041.CrossRefGoogle Scholar
  25. Halloun, I. A., & Hestenes, D. (1987). Modeling instruction in mechanics. American Journal of Physics, 55(5), 455–462.CrossRefGoogle Scholar
  26. Harrison, A. G., & Treagust, D. F. (1996). Secondary students’ mental models of atoms and molecules: Implications for teaching chemistry. Science Education, 80(5), 509–534.CrossRefGoogle Scholar
  27. Hartmann, S. (2008). Modeling in philosophy of science. In M. Frauchiger & W. K. Essler (Eds.), Representation, evidence, and justification: Themes from Suppes (pp. 95–122). Frankfurt, Germany: Ontos Verlag.Google Scholar
  28. Hestenes, D. (1987). Toward a modeling theory of physics instruction. American Journal of Physics, 55(5), 440–454.CrossRefGoogle Scholar
  29. Ingham, A. M., & Gilbert, J. K. (1991). The use of analogue models by students of chemistry at higher education level. International Journal of Science Education, 13(2), 193–202.CrossRefGoogle Scholar
  30. Johnson-Laird, P. (1980). Mental models in cognitive science. Cognitive Science, 4(1), 71–115.CrossRefGoogle Scholar
  31. Johnson-Laird, P. (1983). Mental models. Cambridge, MA: Harvard University Press.Google Scholar
  32. Justi, R. (2006). La Enseñanza de Ciencias Basada en la Elaboración de Modelos [Modelling-based Science Teaching]. Enseñanza de las Ciencias, 24(2), 173–184.Google Scholar
  33. Justi, R., & Gilbert, J. K. (1999). A cause of ahistorical science teaching: Use of hybrid models. Science Education, 83(2), 163–177.CrossRefGoogle Scholar
  34. Justi, R., & Gilbert, J. K. (2002). Modelling, teachers’ views on the nature of modelling, implications for the education of modellers. International Journal of Science Education, 24(4), 369–387.CrossRefGoogle Scholar
  35. Justi, R., & Gilbert, J. K. (2003). Teachers’ views on the nature of models. International Journal of Science Education, 25(11), 1369–1386.CrossRefGoogle Scholar
  36. Knuuttila, T. (2005a). Models as epistemic artefacts: Toward a non-representationalist account of scientific representation. Helsinki, Finland: University of Helsinki.Google Scholar
  37. Knuuttila, T. (2005b). Models, representation, and mediation. Philosophy of Science, 72(5), 1260–1271.CrossRefGoogle Scholar
  38. Knuuttila, T. (2011). Modelling and representing: An artefactual approach to model-based representation. Studies in History and Philosophy of Science, 42(2), 262–272.CrossRefGoogle Scholar
  39. Knuuttila, T., & Boon, M. (2011). How do models give us knowledge? The case of Carnot’s ideal heat engine. European Journal for the Philosophy of Science, 1(3), 309–334.CrossRefGoogle Scholar
  40. Kuhn, D. (1991). The skills of argument. New York, NY: Cambridge University.CrossRefGoogle Scholar
  41. Magnani, L. (2002). Epistemic mediators and model-based discovery in science. In L. Magnani & N. J. Nersessian (Eds.), Model-based reasoning: Science, technology, values (pp. 305–329). New York, NY: Kluwer and Plenum.CrossRefGoogle Scholar
  42. Morrison, M. (2007). Where have all the theories gone? Philosophy of Science, 74(2), 195–228.CrossRefGoogle Scholar
  43. Morrison, M. (2011). One phenomenon, many models: Inconsistency and complementarity. Studies in History and Philosophy of Science, 42(2), 342–351.CrossRefGoogle Scholar
  44. Morrison, M., & Morgan, M. S. (1999). Models as mediating instruments. In M. S. Morgan & M. Morrison (Eds.), Models as mediators: Perspectives on natural and social science (pp. 10–37). Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  45. Murad, M. H. S. A. (2011). Models, scientific realism, the intelligibility of nature, and their cultural significance. Studies in History and Philosophy of Science, 42(2), 253–261.CrossRefGoogle Scholar
  46. Nersessian, N. J. (1992a). How do scientists think? Capturing the dynamics of conceptual change in science. In R. N. Giere (Ed.), Cognitive models of science (pp. 3–44). Minneapolis, MN: University of Minnesota Press.Google Scholar
  47. Nersessian, N. J. (1992b). In the theoretician’s laboratory: Thought experimenting as mental modeling. Photographic Society of America, 2, 291–301.Google Scholar
  48. Nersessian, N. J. (1999). Model-based reasoning in conceptual change. In L. Magnani, N. J. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 5–22). New York, NY: Kluwer and Plenum.CrossRefGoogle Scholar
  49. Nersessian, N. J. (2002). The cognitive basis of model-based reasoning in science. In P. Carruthers, S. Stich, & M. Siegal (Eds.), The cognitive basis of science (pp. 133–153). Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  50. Nersessian, N. J. (2008). Creating scientific concepts. Cambridge, MA: MIT.Google Scholar
  51. Peschard, I. (2011). Making sense of modelling: Beyond representation. European Journal for the Philosophy of Science, 1(3), 335–352.CrossRefGoogle Scholar
  52. Pitkin, H. F. (1992). The concept of representation (2nd ed.). Berkeley, CA: University of California Press.Google Scholar
  53. Portides, D. P. (2005). Scientific models and the semantic view of scientific theories. Philosophy of Science, 72(5), 1287–1298.CrossRefGoogle Scholar
  54. Portides, D. P. (2011). Seeking representations of phenomena: Phenomenological models. Studies in History and Philosophy of Science, 42(2), 334–341.CrossRefGoogle Scholar
  55. Seddon, G. M., & Moore, R. G. (1986). An unexpected effect in the use of models for teaching the visualization of rotation in molecular structures. European Journal of Science Education, 8(1), 79–86.CrossRefGoogle Scholar
  56. Suárez, M. (2003). Scientific representation: Against similarity and isomorphism. International Studies in the Philosophy of Science, 17(3), 225–244.CrossRefGoogle Scholar
  57. Suppe, F. (1989). The semantic conception of theories and scientific realism. Urbana, IL: University of Illinois Press.Google Scholar
  58. Thagard, P. (2010). How brains make mental models. In L. Magnani, W. Carnieli, & C. Pizzi (Eds.), Model-based reasoning in science and technology: Abduction, logic, and computational discovery (pp. 447–461). Berlin, Germany/Heidelberg, Germany: Springer.CrossRefGoogle Scholar
  59. Tiberghien, A. (1994). Modeling as a basis for analyzing teaching-learning situations. Learning and Instruction, 4(1), 71–87.CrossRefGoogle Scholar
  60. van Fraassen, B. (1980). The scientific image. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
  61. Vosniadou, S. (2002). Mental models in conceptual development. In L. Magnani & N. J. Nersessian (Eds.), Model-based reasoning: Science, technology, values (pp. 353–368). New York, NY: Kluwer and Plenum.CrossRefGoogle Scholar
  62. Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24(4), 535–585.CrossRefGoogle Scholar
  63. Vosniadou, S., & Brewer, W. F. (1994). Mental models of the day/night cycle. Cognitive Science, 18(1), 123–183.CrossRefGoogle Scholar
  64. Watson, J. D. (1968). The double helix – The discovery of the structure of DNA. London, UK: Orion Books.Google Scholar
  65. Weisberg, M. (2007). Who is a modeler? British Journal for the Philosophy of Science, 58(2), 207–233.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • John K. Gilbert
    • 1
  • Rosária Justi
    • 2
  1. 1.The University of ReadingBerkshireUK
  2. 2.Universidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations