Skip to main content

Extending the Topological Analysis and Seeking the Real-Space Subsystems in Non-Coulombic Systems with Homogeneous Potential Energy Functions

  • Chapter
  • First Online:
Applications of Topological Methods in Molecular Chemistry

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 22))

Abstract

It is customary to conceive the interactions of all the constituents of a molecular system, i.e. electrons and nuclei, as Coulombic. However, in a more detailed analysis one may always find small but non-negligible non-Coulombic interactions in molecular systems originating from the finite size of nuclei, magnetic interactions, etc. While such small modifications of the Coulombic interactions do not seem to alter the nature of a molecular system in real world seriously, they are a serious obstacle for quantum chemical theories and methodologies which their formalism is strictly confined to the Coulombic interactions. Although the quantum theory of atoms in molecules (QTAIM) has been formulated originally for the Coulombic systems, some recent studies have demonstrated that most of its theoretical ingredients are not sensitive to the explicit form of the potential energy operator. However, the Coulombic interactions have been explicitly assumed in the mathematical procedure that is used to introduce the basin energy of an atom in a molecule. In this study it is demonstrated that the mathematical procedure may be extended to encompass the set of the homogeneous potential energy functions thus relegating adherence to the Coulombic interactions to introduce the energy of a real-space subsystem. On the other hand, this extension opens the door for seeking novel real-space subsystems, apart from atoms in molecules, in non-Coulombic systems. These novel real-space subsystems, quite different from the atoms in molecules, call forĀ an extended formalism that goes beyond the orthodox QTAIM. Accordingly, based on a previous proposal the new formalism, which is not confined to the Coulombic systems nor to the atoms in molecules as the sole real-space subsystems, is termed the quantum theory of proper open subsystems (QTPOS) and its potential applications are detailed. The harmonic trap model, containing non-interacting fermions or bosons, is considered as an example for the QTPOS analysis. The QTPOS analysis of theĀ bosonic systems is particularly quite unprecedented not attempted before.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google ScholarĀ 

  2. Popelier PLA (2000) Atoms in molecules an introduction. Pearson, London

    Google ScholarĀ 

  3. Matta C, Boyd RJ (2007) Quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley, Weinheim

    BookĀ  Google ScholarĀ 

  4. Nasertayoob P, Goli M, Shahbazian S (2011) Int J Quantum Chem 111:1970ā€“1981

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Goli M, Shahbazian S (2011) Int J Quantum Chem 111:1982ā€“1998

    ArticleĀ  CASĀ  Google ScholarĀ 

  6. Heidar Zadeh F, Shahbazian S (2011) Int J Quantum Chem 111:1999ā€“2013

    Google ScholarĀ 

  7. Goli M, Shahbazian S (2011) Theoret Chem Acc 129:235ā€“245

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Goli M, Shahbazian S (2012) Theoret Chem Acc 131, 1208:1ā€“19

    Google ScholarĀ 

  9. Goli M, Shahbazian S (2013) Theoret Chem Acc 132, 1362:1ā€“14

    Google ScholarĀ 

  10. Goli M, Shahbazian S (2013) Theoret Chem Acc 132, 1365:1ā€“17

    Google ScholarĀ 

  11. Goli M, Shahbazian S (2013) Theoret Chem Acc 132, 1410:1ā€“22

    Google ScholarĀ 

  12. Shahbazian S (2013) Found Chem 15:287ā€“302

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Goli M, Shahbazian S (2014) Phys Chem Chem Phys 16:6602ā€“6613

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Goli M, Shahbazian S (2015) Comput Theoret Chem 1053:96ā€“105

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Goli M, Shahbazian S (2015) Phys Chem Chem Phys 17:245ā€“255

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Goli M, Shahbazian S (2015) Phys Chem Chem Phys 17:7023ā€“7037

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Shahbazian S (2014) Found Chem 16:77ā€“84

    ArticleĀ  Google ScholarĀ 

  18. von Oertzen W, Freer M, Kanada-Enā€™yo Y (2006) Phys Rep 432:43ā€“113

    Google ScholarĀ 

  19. Freer M (2007) Rep Prog Phys 70:2149ā€“2210

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Ruijgrok TW, Tjon JA, Wu TT (1983) Phys Lett B 129:209ā€“212

    ArticleĀ  Google ScholarĀ 

  21. Singer R, Trautmann D (1989) Nucl Phys A 491:525ā€“540

    ArticleĀ  Google ScholarĀ 

  22. Yamazaki T, Akaishi Y (2007) Phys Rev C 76, 045201:1ā€“16

    Google ScholarĀ 

  23. Yamazaki T (2007) Prog Theoret Phys Suppl 170:138ā€“160

    ArticleĀ  CASĀ  Google ScholarĀ 

  24. Gutsche T, Branz T, Faessler A, Lee IW, Lyubovitskij VE (2010) Chin Phys C 34:1185ā€“1190

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Tƶrnqvist NA (1994) Z Phys C 61:525ā€“537

    Google ScholarĀ 

  26. Wong C-Y (2004) Phys Rev C 69, 055202:1ā€“13

    Google ScholarĀ 

  27. Suzuki M (2005) Phys Rev D 72, 114013:1ā€“13

    Google ScholarĀ 

  28. Liu Y-R, Liu X, Deng W-Z, Zhu S-L (2008) Eur Phys J C 56:63ā€“73

    ArticleĀ  CASĀ  Google ScholarĀ 

  29. Liu X, Liu Y-R, Deng W-Z, Zhu S-L (2008) Phys Rev D 77, 034003:1ā€“9

    Google ScholarĀ 

  30. Lee N, Luo Z-G, Chen X-L, Zhu S-L (2011) Phys Rev D 84, 114013:1ā€“15

    Google ScholarĀ 

  31. Hall JMM, Kamleh W, Leinweber DB, Menadue BJ, Owen BJ, Thomas AW, Young RD (2015) Phys Rev Lett 114, 132002:1ā€“5

    Google ScholarĀ 

  32. Kastner MA (1993) Phys Today 46:24ā€“31

    ArticleĀ  CASĀ  Google ScholarĀ 

  33. Ashoori RC (1996) Nature 379:413ā€“419

    ArticleĀ  CASĀ  Google ScholarĀ 

  34. van Loo AF, Federov A, LalumiĆ©re K, Sanders BC, Blais A, Wallraff A (2013) Science 342:1494ā€“1496

    ArticleĀ  Google ScholarĀ 

  35. Gustafsson MV, Aref T, Kockum AF, Ekstrƶm MK, Johansson G, Delsing P (2014) Science 346:207ā€“211

    ArticleĀ  CASĀ  Google ScholarĀ 

  36. Pethick CJ, Smith H (2004) Bose-Einstein condensation in dilute gases. Cambridge University Press, Cambridge

    Google ScholarĀ 

  37. Leggett AJ (2006) Quantum liquids: Bose condensation and cooper pairing in condensed-matter systems. Oxford University Press, Oxford

    BookĀ  Google ScholarĀ 

  38. Weber T, Herig J, Mark M, NƤgerl H-C, Grimm R (2003) Science 299:232ā€“235

    ArticleĀ  CASĀ  Google ScholarĀ 

  39. Jochim S, Bartenstein M, Altmeyer A, Hendl G, Ridel S, Chin C, Denschlag JH, Grimm R (2003) Science 302:2101ā€“2103

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Nasertayoob P, Shahbazian S (2010) Int J Quantum Chem 110:1188ā€“1196

    CASĀ  Google ScholarĀ 

  41. Joypazadeh H, Shahbazian S (2014) Found Chem 16:63ā€“75

    ArticleĀ  Google ScholarĀ 

  42. Bader RFW, Popelier PLA (1993) Int J Quantum Chem 45:189ā€“207

    ArticleĀ  CASĀ  Google ScholarĀ 

  43. Bader RFW (2007) J Phys Chem A 111:7966ā€“7972

    ArticleĀ  CASĀ  Google ScholarĀ 

  44. Levine IN (2006) Quantum chemistry, 5th edn. Prentice-Hall, New Delhi

    Google ScholarĀ 

  45. Anderson JSM, Ayers PW, Hernandez JIR (2010) J Phys Chem A 114:8884ā€“8895

    Google ScholarĀ 

  46. Eberhart M (2001) Philos Mag B 81:721ā€“729

    ArticleĀ  CASĀ  Google ScholarĀ 

  47. Heidar Zadeh F, Shahbazian S (2011) Int J Quantum Chem 111:2788ā€“2801

    Google ScholarĀ 

  48. Jones TE, Eberhart ME, Clougherty DP, Woodward C (2008) Phys Rev Lett 101, 085505:1ā€“4

    Google ScholarĀ 

  49. Jones TE, Eberhart ME, Clougherty DP (2008) Phys Rev Lett 101, 017208:1ā€“4

    Google ScholarĀ 

  50. Jones TE (2009) J Chem Phys 130, 204108:1ā€“5

    Google ScholarĀ 

  51. Jones TE, Eberhart ME (2010) Int J Quantum Chem 110:1500ā€“1505

    ArticleĀ  CASĀ  Google ScholarĀ 

  52. Jones TE, Eberhart ME, Clougherty DP (2010) Phys Rev Lett 105, 265702:1ā€“4

    Google ScholarĀ 

  53. Jones TE, Eberhart ME, Imlay S, Mackey C (2011) J Phys Chem A 115:12582ā€“12585

    ArticleĀ  CASĀ  Google ScholarĀ 

  54. Jones TE, Eberhart ME, Imlay S, Mackey C, Olson GB (2012) Phys Rev Lett 109, 125506:1ā€“5

    Google ScholarĀ 

  55. Eberhart ME, Jones TE (2012) Phys Rev B 86, 134106:1ā€“7

    Google ScholarĀ 

  56. Heidar Zadeh F, Shahbazian S (2011) Theoret Chem. Acc 128:175ā€“181

    Google ScholarĀ 

  57. Cornell EA, Wieman CE (1998) Sci Am 3:40ā€“45

    Google ScholarĀ 

  58. Grossmann S, Holthaus M (1995) Phys Lett A 208:188ā€“192

    ArticleĀ  CASĀ  Google ScholarĀ 

  59. Ruprecht PA, Holland MJ, Burnett K, Edwards M (1995) Phys Rev A 51:4704ā€“4711

    ArticleĀ  CASĀ  Google ScholarĀ 

  60. Edwards M, Burnett K (1995) Phys Rev A 51:4704ā€“4711

    ArticleĀ  Google ScholarĀ 

  61. Holland M, Cooper J (1996) Phys Rev A 53:R1954ā€“R1957

    ArticleĀ  CASĀ  Google ScholarĀ 

  62. Ketterle W, van Druten NJ (1996) Phys Rev A 54:656ā€“660

    ArticleĀ  CASĀ  Google ScholarĀ 

  63. Kirsten K, Toms DJ (1996) Phys Rev A 54:4188ā€“4202

    ArticleĀ  CASĀ  Google ScholarĀ 

  64. Haugerud H, Haugset T, Ravndal F (1997) Phys Lett A 225:18ā€“22

    ArticleĀ  CASĀ  Google ScholarĀ 

  65. Haugset T, Haugerud H, Andersen JO (1997) Phys Rev A 55:2922ā€“2929

    ArticleĀ  CASĀ  Google ScholarĀ 

  66. Pathria PK (1998) Phys Rev A 58:1490ā€“1495

    ArticleĀ  CASĀ  Google ScholarĀ 

  67. Ligare M (1998) Am J Phys 66, 185ā€“190; 2002 70:76ā€“78

    Google ScholarĀ 

  68. Ye J-P, Hu G-X, An S-Q, Dai X-X, Dai J, Evenson WE (2003) Phys A 323:357ā€“369

    ArticleĀ  Google ScholarĀ 

  69. DeMarco B, Jin DS (1999) Science 285:1703ā€“1706

    ArticleĀ  CASĀ  Google ScholarĀ 

  70. Thomas JE, Gehm ME (2004) Am Sci 92:238ā€“245

    Google ScholarĀ 

  71. Thomas JE (2006) Nature Phys 2:377ā€“378

    ArticleĀ  CASĀ  Google ScholarĀ 

  72. Werner F, Castin Y (2006) Phys Rev A 74, 053604:1ā€“10

    Google ScholarĀ 

  73. Yin J (2006) Phys Rep 430:1ā€“116

    ArticleĀ  CASĀ  Google ScholarĀ 

  74. Bader RFW, Nguyen-Dang TT, Tal Y (1981) Rep Prog Phys 44:893ā€“948

    ArticleĀ  Google ScholarĀ 

  75. Bader RFW (2001) Theoret Chem Acc 105:276ā€“283

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgments

The author is grateful to Masume Gharabaghi and Ɓngel Martƭn-PendƔs for their detailed reading of a previous draft of this paper and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shant Shahbazian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shahbazian, S. (2016). Extending the Topological Analysis and Seeking the Real-Space Subsystems in Non-Coulombic Systems with Homogeneous Potential Energy Functions. In: Chauvin, R., Lepetit, C., Silvi, B., Alikhani, E. (eds) Applications of Topological Methods in Molecular Chemistry. Challenges and Advances in Computational Chemistry and Physics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-29022-5_4

Download citation

Publish with us

Policies and ethics