Skip to main content

What Can Be Learnt from a Location of Bond Paths and from Electron Density Distribution

  • Chapter
  • First Online:
Applications of Topological Methods in Molecular Chemistry

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 22))

Abstract

A bond path being a line of maximum electron density linking attractors of two atoms is often applied in various studies as a criterion of the existence of numerous interactions such as for example hydrogen, halogen or pnicogen bond. It covers cases of atom-atom energetically stabilized links, from weak van der Waals interactions, through stronger Lewis acid–Lewis base interactions up to covalent bonds. The location of bond paths also allows interpreting mechanisms of interactions and, in general, of chemical reactions. The Quantum Theory of Atoms in Molecules (QTAIM) results are mainly presented here; however they are supported by other approaches as, for example, the Natural Bond Orbitals (NBO) method or the σ-hole concept. The most important orbital-orbital interactions determined from the NBO method and characterizing different types of interactions are presented. The analysis of the distribution of the electron charge density is also performed here for numerous systems; this is shown that the regions of the concentration and depletion of the electron density coincide with the regions of the negative and positive regions of the electrostatic potential. The role of the analysis of the laplacian of the electron density is shown on the basis of numerous interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tsirelson VG, Ozerov RP (1996) Electron density and bonding in crystals. Institute of Physics, Bristol, Philadelphia

    Google Scholar 

  2. Coppens P (1997) X-Ray charge densities and chemical bonding. Oxford University Press, IUCr

    Google Scholar 

  3. Koritszansky TS, Coppens P (2001) Chemical applications of X-ray charge density analysis. Chem Rev 101:1583–1638

    Article  Google Scholar 

  4. Bader RFW (1985) Atoms in molecules. Acc Chem Res 18:9–15

    Article  CAS  Google Scholar 

  5. Bader RFW (1990) Atoms in molecules, a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  6. Popelier P (2000) Atoms in molecules. an introduction. Prentice Hall, Pearson Education Limited, Harlow

    Google Scholar 

  7. Matta C, Boyd RJ (ed) (2007) Quantum theory of atoms in molecules: recent progress in theory and application. Wiley-VCH

    Google Scholar 

  8. Dunitz JD (1979) X-Ray analysis and the structure of organic molecules. Cornell University Press, Ithaca, p 395

    Google Scholar 

  9. Bader RFW (1998) A bond path: a universal indicator of bonded interactions. J Phys Chem A 102:7314–7323

    Article  CAS  Google Scholar 

  10. Bader RFW (2009) Bond paths are not chemical bonds. J Phys Chem A 113:10391–10396

    Article  CAS  Google Scholar 

  11. Runtz GR, Bader RFW, Messer RR (1977) Definition of bond paths and bond directions in terms of the molecular charge distribution. Can J Chem 55:3040–3045

    Article  CAS  Google Scholar 

  12. Keith TA, Bader RFW, Aray Y (1996) Structural homeomorphism between the electron density and the virial field. Int J Quantum Chem 57:183–198

    Article  CAS  Google Scholar 

  13. Gatti C, Cargnoni F, Bertini L (2003) Chemical information from the source function. J Comput Chem 24:422–436

    Article  CAS  Google Scholar 

  14. Gatti C (2005) Chemical bonding in crystals: new directions. Z Kristallogr 220:399–457

    CAS  Google Scholar 

  15. Stalke D (2011) Meaningful structural descriptors from charge density. Chem Eur J 17:9264–9278

    Article  CAS  Google Scholar 

  16. Rozas I, Alkorta I, Elguero J (2000) Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc 122:1154–11161

    Article  Google Scholar 

  17. Grabowski SJ (2011) What is the covalency of hydrogen bonding? Chem Rev 11:2597–2625

    Article  Google Scholar 

  18. Cremer D, Kraka E (1984) A description of the chemical-bond in terms of local properties of electrodensity and energy. Croat Chem Acta 57:1259–1281

    Google Scholar 

  19. Jenkins S, Morrison I (2000) The chemical character of the intermolecular bonds of seven phases of ice as revealed by ab initio calculation of electron densities. Chem Phys Lett 317:97–102

    Article  CAS  Google Scholar 

  20. Grabowski SJ (2001) Ab initio calculations on conventional and unconventional hydrogen bonds—study of the hydrogen bond strength. J Phys Chem A 105:10739–10746

    Article  CAS  Google Scholar 

  21. Weinhold F, Landis C (2005) Valency and bonding, a natural bond orbital donor—acceptor perspective. Cambridge University Press

    Google Scholar 

  22. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular Interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  23. Alabugin IV, Manoharan M, Peabody S, Weinhold F (2003) Electronic basis of improper hydrogen bonding: a subtle balance of hyperconjugation and rehybridization. J Am Chem Soc 125:5973–5987

    Article  CAS  Google Scholar 

  24. Weinhold F, Klein R (2012) What is a hydrogen bond? mutually consistent theoretical and experimental criteria for characterizing H-bonding interactions. Mol Phys 110:565–579

    Article  CAS  Google Scholar 

  25. Murray JS, Lane P, Politzer P (2009) Expansion of the σ-hole concept. J Mol Model 15:723–729

    Article  CAS  Google Scholar 

  26. Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748–7758

    Article  CAS  Google Scholar 

  27. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  28. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  29. Nyburg SC, Faerman CH (1985) A revision of van der Waals atomic radii for molecular crystals: nitrogen, oxygen, fluorine, sulfur, chlorine, selenium, bromine, and iodine bonded to carbon. Acta Crystallogr B 41:274–279

    Article  Google Scholar 

  30. Zordan F, Brammer L, Sherwood P (2005) Supramolecular chemistry of halogens: complementary features of inorganic (M-X) and organic (C-X’) halogens applied to M-X…X’-C halogen bond formations. J Am Chem Soc 127:5979–5989

    Article  CAS  Google Scholar 

  31. Formigué M, Batail P (2004) Activation of hydrogen- and halogen-bonding interactions in tetrathiafulvalene-based crystalline molecular conductors. Chem Rev 104:5379–5418

    Article  Google Scholar 

  32. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  33. Clark T (2013) σ-Holes. Wires Comput Mol Sci 3:13–20

    Article  CAS  Google Scholar 

  34. Politzer P, Murray JS, Concha MC (2007) Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors. J Mol Model 13:643–650

    Article  CAS  Google Scholar 

  35. Landrum GA, Goldberg N, Hoffmann R, Minyaev RM (1998) Intermolecular interactions between hypervalent molecules: Ph2IX and XF3 (X = Cl, Br, I) dimers. New J Chem 22:883–890

    Article  CAS  Google Scholar 

  36. Wang W (2011) Halogen bond involving hypervalent halogen: CSD search and theoretical study. J Phys Chem A 115:9294–9299

    Article  CAS  Google Scholar 

  37. Grabowski SJ (2014) Halogen bond with the multivalent halogen acting as the Lewis acid center. Chem Phys Lett 605–606:131–136

    Article  Google Scholar 

  38. Weinhold F, Landis C (2005) Valency and bonding, a natural bond orbital donor—acceptor perspective. Cambridge University Press, pp 275–306

    Google Scholar 

  39. Pimentel GC (1951) The bonding of trihalide and bifluoride ions by the molecular-orbital method. J Chem Phys 19:446–448

    Article  CAS  Google Scholar 

  40. Rundle RE (1947) Electron deficient compounds. J Am Chem Soc 69:1327–1331

    Article  CAS  Google Scholar 

  41. Politzer P, Murray JS (2013) Halogen bonding: an interim discussion. ChemPhysChem 14:2145–2151

    Article  Google Scholar 

  42. Bundhun A, Ramasami P, Murray JS, Politzer P (2012) Trends in σ-hole strengths and interactions of F3MX molecules (M = C, Si, Ge and X = F, Cl, Br, I). J Mol Mod 19:2739–2746

    Article  Google Scholar 

  43. Bauzá A, Mooibroek TJ, Frontera A (2013) Tetrel-bonding interaction rediscovered supramolecular force ? Angew Chem Int Ed Engl 52:12317–12321

    Article  Google Scholar 

  44. Mani D, Arunan E (2013) The X-C…Y (X = O/F, Y = O/S/F/Cl/Br/N/P) ‘carbon bond’ and hydrophobic interactions. Phys Chem Chem Phys 15:14377–14383

    Article  CAS  Google Scholar 

  45. Grabowski SJ (2014) Tetrel bond—σ-hole bond as a preliminary stage of the SN2 reaction. Phys Chem Chem Phys 16:1824–1834

    Article  CAS  Google Scholar 

  46. Sundberg MR, Uggla R, Viñas C, Teixidor F, Paavola S, Kivekäs R (2007) Nature of intramolecular interactions in hypercoordinate C-substituted 1,2-dicarba-closo-dodecaboranes with short P…P distances. Inorg Chem Commun 10:713–716

    Article  CAS  Google Scholar 

  47. Bauer S, Tschirschwitz S, Lönnecke P, Franck R, Kirchner B, Clark ML, Hey-Hawkins E (2009) Enantiomerically Pure Bis(phosphanyl)carbaborane(12) Compounds. Eur J Inorg Chem 2776–2788

    Google Scholar 

  48. Del Bene JE, Alkorta I, Sanchez-Sanz G, Elguero J (2011) Structures, energies, bonding, and NMR properties of pnicogen complexes H2XP:NXH2 (X = H, CH3, NH2, OH, F, Cl). J Phys Chem A 115:13724–13731

    Article  Google Scholar 

  49. Scheiner S (2011) Can two trivalent N atoms engage in a direct N…N noncovalent interaction? Chem Phys Lett 514:32–35

    Article  CAS  Google Scholar 

  50. Grabowski SJ (2013) σ-Hole bond versus hydrogen bond: from tetravalent to pentavalent N, P, and as atoms. Chem Eur J 19:14600–14611

    Article  CAS  Google Scholar 

  51. Sanz P, Yañez M, Mó O (2002) Competition between X…H…Y intramolecular hydrogen bonds and X…Y (X = O, S, and Y = Se, Te) chalcogen-chalcogen interactions. J Phys Chem A 106:4661–4668

    Article  CAS  Google Scholar 

  52. Wang W, Ji B, Zhang Y (2009) Chalcogen bond: a sister noncovalent bond to halogen bond. J Phys Chem A 113:8132–8135

    Article  Google Scholar 

  53. Alikhani E, Fuster F, Madebene B, Grabowski SJ (2014) Topological reaction sites—very strong chalcogen bonds. Phys Chem Chem Phys 16:2430–2442

    Article  CAS  Google Scholar 

  54. Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2011) 31P-31P Spin-Spin coupling constants for pnicogen homodimers. Chem Phys Lett 512:184–187

    Article  Google Scholar 

  55. Del Bene JE, Alkorta I, Elguero J (2015) Substituent effects on the properties of pnicogen-bonded complexes H2XP:PYH2, for X, Y = F, Cl, OH, NC, CCH, CH3, CN, and H. J Phys Chem A 119:224–233

    Article  Google Scholar 

  56. Eskandari K, Mahmoodabadi N (2013) Pnicogen bonds: a theoretical study based on the laplacian of electron density. J Phys Chem A 117:13018–13024

    Article  CAS  Google Scholar 

  57. Eskandari K, Zariny H (2010) Halogen bonding: a lump-hole interaction. Chem Phys Lett 492:9–13

    Article  CAS  Google Scholar 

  58. Bento AP, Solà M, Bickelhaupt FM (2005) Ab initio and DFT benchmark study for nucleophilic substitution at carbon (SN2@C) and silicon (SN2@Si). J Comput Chem 26:1497–1504

    Article  CAS  Google Scholar 

  59. Pierrefixe SCAH, Guerra CF, Bickelhaupt FM (2008) Hypervalent silicon versus carbon: ball-in-a-box model. Chem Eur J 14:819–828

    Article  Google Scholar 

  60. Levy CJ, Puddephatt RJ (1997) Rapid reversible oxidative addition of group 14-halide bonds to platinum(ii): rates, equilibria, and bond energies. J Am Chem Soc 119:10127–10136

    Article  CAS  Google Scholar 

  61. Grabowski SJ (2014) Clusters of ammonium cation–hydrogen bond versus σ-hole bond. ChemPhysChem 15:876–884

    Article  CAS  Google Scholar 

  62. Murray JS, Riley KE, Politzer P, Clark T (2010) Directional weak intermolecular interactions: σ-hole bonding. Aust J Chem 63:1598–1607

    Article  CAS  Google Scholar 

  63. Lipkowski P, Grabowski SJ (2014) Could the lithium bond be classified as the σ-hole bond?—QTAIM and NBO analysis. Chem Phys Lett 591:113–118

    Article  CAS  Google Scholar 

  64. Allen FH (2002) The cambridge structural database: a quarter of a million crystal structures and rising. Acta Cryst B58:380–388

    Article  CAS  Google Scholar 

  65. http://www.ccdc.cam.ac.uk/Lists/ResourceFileList/2014_stats_entries.pdf

  66. Domagała M, Grabowski SJ (2009) X-H…π and X-H…N hydrogen bonds—acetylene and hydrogen cyanide as proton acceptors. Chem Phys 363:42–48

    Article  Google Scholar 

  67. Nishio M, Hirota M, Umezawa Y (1998) The CH/π interaction, evidence, nature, and consequences. Wiley-VCH, New York

    Google Scholar 

  68. Grabowski SJ, Ugalde JM (2010) Bond paths show preferable interactions: ab initio and QTAIM studies on the X-H· · ·π hydrogen bond. J Phys Chem A 114:7223–7229

    Article  CAS  Google Scholar 

  69. Szymczak JJ, Grabowski SJ, Roszak S, Leszczynski J (2004) H…σ interactions—an ab initio and ‘atoms in molecules’ study. Chem Phys Lett 393:81–86

    Article  CAS  Google Scholar 

  70. Grabowski SJ, Sokalski WA, Leszczynski J (2006) Can H…σ, π…H + …σ and σ…H + …σ interactions be classified as H-bonded? Chem Phys Lett 432:33–39

    Article  CAS  Google Scholar 

  71. Grabowski SJ (2007) Hydrogen bonds with π and σ electrons as the multicenter proton acceptors: high level ab initio calculations. J Phys Chem A 111:3387–3393

    Article  CAS  Google Scholar 

  72. Grabowski SJ (2013) Dihydrogen bond and X-H…σ interaction as sub-classes of hydrogen bond. J Phys Org Chem 26:452–459

    Article  CAS  Google Scholar 

  73. Jucks KW, Miller RE (1987) Infrared stark spectroscopy on the hydrogen-HF binary complex. J Chem Phys 87:5629–5633

    Article  CAS  Google Scholar 

  74. Moore DT, Miller RE (2003) Dynamics of hydrogen–HF complexes in helium nanodroplets. J Chem Phys 118:9629–9636

    Article  CAS  Google Scholar 

  75. Moore DT, Miller RE (2003) Solvation of HF by molecular hydrogen: helium nanodroplet vibrational spectroscopy. J Phys Chem A 107:10805–10812

    Article  CAS  Google Scholar 

  76. Moore DT, Miller RE (2004) Rotationally resolved infrared laser spectroscopy of (H2)n-HF and (D2)n-HF (n = 2-6) in helium nanodroplets. J Phys Chem A 108:1930–1937

    Article  CAS  Google Scholar 

  77. Bieske EJ, Nizkorodov SA, Bennett FR, Maier JP (1996) The infrared spectrum of the H2–HCO1 complex. J Chem Phys 102:5152–5164

    Article  Google Scholar 

  78. Urban J, Roszak S, Leszczynski J (2001) Shellvation of the ammonium cation by molecular hydrogen: a theoretical study. Chem Phys Lett 346:512–518

    Article  CAS  Google Scholar 

  79. Grabowski SJ, Alkorta I, Elguero J (2013) Complexes between dihydrogen and amine, phosphine, and arsine derivatives. hydrogen bond versus pnictogen interaction. J Phys Chem A 117:3243–3251

    Article  CAS  Google Scholar 

  80. Richardson TB, de Gala S, Crabtree RH (1995) Unconventional hydrogen bonds: intermolecular B-H…H-N interactions. J Am Chem Soc 117:12875–12876

    Article  CAS  Google Scholar 

  81. Wessel J, Lee JC Jr, Peris E, Yap GPA, Fortin JB, Ricci JS, Sini G, Albinati A, Koetzle TF, Eisenstein O, Rheingold AL, Crabtree RH (1995) An unconventional intermolecular three-center N-H…H2Re hydrogen bond in crystalline [ReH5(PPh3)3]-indole-C6H6. Angew Chem Int Ed Engl 34:2507–2509

    Article  CAS  Google Scholar 

  82. Crabtree RH, Siegbahn PEM, Eisenstein O, Rheingold AL, Koetzle TFA (1996) A new intermolecular interaction: unconventional hydrogen bonds with element-hydride bonds as proton acceptor. Acc Chem Res 29:348–354

    Article  CAS  Google Scholar 

  83. Crabtree RH, Eisenstein O, Sini G, Peris E (1998) New types of hydrogen bonds. J Organomet Chem 567:7–11

    Article  CAS  Google Scholar 

  84. Cybulski H, Pecul M, Sadlej J (2003) Characterization of dihydrogen-bonded D-H…H–A complexes on the basis of infrared and magnetic resonance spectroscopic parameters. J Chem Phys 119:5094–5104

    Article  CAS  Google Scholar 

  85. Kubas GJ (2001) Metal dihydrogen and σ-bond complexes. Kluwer, Academic, New York

    Google Scholar 

  86. Stephan DW, Erker G (2010) Frustrated Lewis pairs: metal-free hydrogen activation and more. Angew Chem Int Ed 49:46–76

    Article  CAS  Google Scholar 

  87. Rokob TA, Bakó I, Stirling A, Hamza A, Pápai I (2013) Reactivity models of hydrogen activation by frustrated Lewis pairs: synergistic electron transfers or polarization by electric field? J Am Chem Soc 135:4425–4437

    Article  CAS  Google Scholar 

  88. Todd A, Keith TK (2011) AIMAll (Version 11.08.23). Gristmill Software, Overland Park KS, USA (aim.tkgristmill.com)

Download references

Acknowledgments

Financial support comes from Eusko Jaurlaritza (GIC 07/85 IT-330-07) and the Spanish Office for Scientific Research (CTQ2011-27374). Technical and human support provided by Informatikako Zerbitzu Orokora - Servicio General de Informatica de la Universidad del Pais Vasco (SGI/IZO-SGIker UPV/EHU), Ministerio de Ciencia e Innovación (MICINN), Gobierno Vasco Eusko Jaurlanitza (GV/EJ), European Social Fund (ESF) is gratefully acknowledged. The QTAIM calculations as well as the corresponding figures were performed with the use of the AIMAll program [88].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sławomir J. Grabowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grabowski, S.J. (2016). What Can Be Learnt from a Location of Bond Paths and from Electron Density Distribution. In: Chauvin, R., Lepetit, C., Silvi, B., Alikhani, E. (eds) Applications of Topological Methods in Molecular Chemistry. Challenges and Advances in Computational Chemistry and Physics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-29022-5_15

Download citation

Publish with us

Policies and ethics