Skip to main content

Localized Structures at the Hückel Level, a Hückel-Derived Valence Bond Method

  • Chapter
  • First Online:
Applications of Topological Methods in Molecular Chemistry

Abstract

A simple Hückel Hamiltonian is used and modified to describe localized states, where the electron pairs are confined to bonds between two atoms, or to lone pairs. The electronic delocalization can be considered either as a mixture of these localized states, or through a standard Hückel calculation. The two Hückel-Lewis methods described here attempt to find the coefficients of the mixture, based on energy or overlap consistence with the standard Hückel results. After the description of the two methods, test examples are used to show advantages and drawbacks of the different approaches. In any case, the results are compared to the NBO-NRT approach which is used on the electronic density obtained from standard DFT hybrids calculations such as B3LYP/6-31+G(d). This chapter ends with an introduction to the HuLiS program in which the two methods are implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Two structures are equivalent when they behave the same and/or when one can be deduced from the other by symmetry.

  2. 2.

    It is the same in the Hückel method: \(\beta\) is negative because the low energy solution is an in-phase interaction and because two adjacent \(p\) orbitals overlap positively.

  3. 3.

    Note here that the \(\tau\) value for the NRT results is defined as the sum of the weights of the \(\pi\)/Lewis resonant structures built from the NBO analysis of the molecular density. The NRT weights given here are renormalized so that the sum of the weights of all considered contributors is equal to 100 %. The same definition will apply in Sect. 13.3.2.

  4. 4.

    Note to the referee: at the moment HuLiS is at http://www.hulis.free.fr but it will migrate soon.

  5. 5.

    The molecule has however to be Hückel-compatible i.e. essentially flat. Methyl substituents are allowed.

References

  1. Carissan Y, Hagebaum-Reignier D, Goudard N, Humbel S (2008) J Phys Chem A 112(50):13256

    Article  CAS  Google Scholar 

  2. Shaik SS, Hiberty PC (2008) A chemist’s guide to valence bond theory. Wiley-Interscience, Hoboken

    Google Scholar 

  3. Cooper DL (ed) (2002) Valence bond theory. Elsevier Science

    Google Scholar 

  4. Chirgwin BH, Coulson CA (1950) Proc R Soc Lond Math Phys Eng Sci 201(1065):196

    Article  CAS  Google Scholar 

  5. Jensen F (2006) Introduction to computational chemistry. Wiley

    Google Scholar 

  6. Deglmann P, Schäfer A, Lennartz C (2015) Int J Quantum Chem 115(3):107

    Article  CAS  Google Scholar 

  7. Hirao K, Nakano H, Nakayama K, Dupuis M (1996) J Chem Phys 105(20):9227

    Article  CAS  Google Scholar 

  8. Thorsteinsson T, Cooper D, Gerratt J, Karadakov P, Raimondi M (1996) Theor Chim Acta 93(6):343

    Article  CAS  Google Scholar 

  9. Glendening ED, Weinhold F (1998) J Comput Chem 19(6):593

    Article  CAS  Google Scholar 

  10. Bader RF (1994) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  11. Shaik S, Danovich D, Silvi B, Lauvergnat D, Hiberty P (2005) Chem Eur J 11(21):6358

    Google Scholar 

  12. Rahm M, Christe KO (2013) ChemPhysChem 14(16):3714

    Article  CAS  Google Scholar 

  13. Glendening ED, Weinhold F (1998) J Comput Chem 19(6):610

    Article  CAS  Google Scholar 

  14. Glendening ED, Badenhoop JK, Weinhold F (1998) J Comput Chem 19(6):628

    Article  CAS  Google Scholar 

  15. Rauk A (2001) Orbital interaction theory of organic chemistry, 2nd edn. Wiley

    Google Scholar 

  16. Van-Catledge F (1980) J Org Chem 45:4801

    Article  CAS  Google Scholar 

  17. Hückel E (1957) Z Für Elektrochem. Berichte Bunsenges. Für Phys Chem 61(8):866

    Google Scholar 

  18. Kutzelnigg W (2007) J Comput Chem 28(1):25

    Article  CAS  Google Scholar 

  19. Humbel S (2007) J Chem Educ 84(8):1277

    Article  CAS  Google Scholar 

  20. Hagebaum-Reignier D, Girardi R, Carissan Y, Humbel S (2007) J Mol Struct Theochem 817(1–3):99

    Article  CAS  Google Scholar 

  21. Löwdin PO (1955) Phys Rev 97(6):1474

    Article  Google Scholar 

  22. Leasure SC, Balint-Kurti GG (1985) Phys Rev A 31(4):2107

    Article  CAS  Google Scholar 

  23. Glendening ED, Landis CR, Weinhold F (2013) J Comput Chem 34(16):1429

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian Inc. Wallingford CT (2009)

    Google Scholar 

  25. Levin G, Goddard WA (1975) J Am Chem Soc 97(7):1649

    Article  CAS  Google Scholar 

  26. Levin G, Goddard WA (1975) Theoret Chim Acta 37(4):253

    Article  CAS  Google Scholar 

  27. Shaik SS, Hiberty PC, Lefour JM, Ohanessian G (1987) J Am Chem Soc 109(2):363

    Article  CAS  Google Scholar 

  28. Mach TJ, King RA, Crawford TD (2010) J Phys Chem A 114(33):8852

    Article  CAS  Google Scholar 

  29. Olsen S, McKenzie RH (2012) J Chem Phys 136(23):234313

    Article  Google Scholar 

  30. Schleyer PR (2001) Chem Rev 101(5):1115

    Google Scholar 

  31. Krygowski TM, Szatylowicz H, Stasyuk OA, Dominikowska J, Palusiak M (2014) Chem Rev 114(12):6383

    Article  CAS  Google Scholar 

  32. Norbeck JM, Gallup GA (1974) J Am Chem Soc 96(11):3386

    Article  CAS  Google Scholar 

  33. Goudard N, Carissan Y, Hagebaum-Reignier D, Humbel S (2014) http://ism2.univ-amu.fr/hulis or mobile version: http://ism2.univ-amu.fr/m-hulis

  34. Aihara J (1976) J Am Chem Soc 98(10):2750

    Article  CAS  Google Scholar 

  35. Gutman I, Milun M, Trinajstic N (1977) J Am Chem Soc 99(6):1692

    Article  CAS  Google Scholar 

  36. Gutman I, Milun M, Trinajstic N (1976) Croat Chem Acta 48:87

    CAS  Google Scholar 

  37. Chauvin R, Lepetit C (2013) Phys Chem Chem Phys 15(11):3855

    Article  CAS  Google Scholar 

  38. Balasubramanian K (1991) J Math Chem 7(1):353

    Article  CAS  Google Scholar 

  39. Schaad LJ, Hess BA (2001) Chem Rev 101(5):1465

    Article  CAS  Google Scholar 

  40. Malrieu JP, Gicquel M, Fowler PW, Lepetit C, Heully JL, Chauvin R (2008) J Phys Chem A 112(50):13203

    Article  CAS  Google Scholar 

  41. Chauvin R, Lepetit C, Fowler PW, Malrieu JP (2010) Phys Chem Chem Phys 12(20):5295

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannick Carissan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carissan, Y., Goudard, N., Hagebaum-Reignier, D., Humbel, S. (2016). Localized Structures at the Hückel Level, a Hückel-Derived Valence Bond Method. In: Chauvin, R., Lepetit, C., Silvi, B., Alikhani, E. (eds) Applications of Topological Methods in Molecular Chemistry. Challenges and Advances in Computational Chemistry and Physics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-29022-5_13

Download citation

Publish with us

Policies and ethics