Skip to main content

Paradise Lost—π-Electron Conjugation in Homologs and Derivatives of Perylene

  • Chapter
  • First Online:
Applications of Topological Methods in Molecular Chemistry

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 22))

Abstract

Various Kekulé–structure–based models, aimed at describing π-electron conjugation in polycyclic aromatic compounds are briefly described. Our main concern are benzenoid hydrocarbons, π-electron systems in which the Kekulé–structure–based approaches are expected to yield the best results. Although there are numerous examples in which reasonings based on Kekulé structures render correct results, there exist cases in which significant violations are encountered. Perylene, its homologs, and derivatives are characteristic representatives of such “anomalous” conjugated systems. Violations from the predictions of the Kekulé–structure–based models are verified by means of a variety of Kekulé–structure–independent theoretical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wizinger-Aust R, Gillis JB, Helferich B, Wurster C (1966) Kekulé und seine Benzolformel. Verlag Chemie, Weinheim

    Google Scholar 

  2. Bugge G (1979) Das Buch der Grossen Chemiker II. Verlag Chemie, Weinheim, pp 200–216

    Google Scholar 

  3. Hückel E (1931) Quantentheoretische Beiträge zum Benzolproblem I. Die Elektronenkonfiguration des Benzols und verwandter Verbindungen. Z Phys 70:204–286

    Article  Google Scholar 

  4. Hückel E (1940) Grundzüge der Theorie ungesättigter und aromatischer Verbindungen. Verlag Chemie, Berlin

    Google Scholar 

  5. Pauling L, Wheland GW (1933) The nature of the chemical bond. V. The quantum–mechanical calculation of the resonance energy of benzene and naphtalene and the hydrocarbon free radicals. J Chem Phys 1:362–374

    Article  CAS  Google Scholar 

  6. Pauling L, Sherman J (1933) The nature of the chemical bond. VI. The calculation from thermochemical data of the energy of resonance of molecules among several electronic structures. J Chem Phys 1:606–617

    Article  CAS  Google Scholar 

  7. Pauling L (1945) The nature of the chemical bond. Cornell Univ. Press, Ithaca

    Google Scholar 

  8. Gallup GA (2002) A short history of valence bond theory. In: Cooper DL (ed) Valence bond theory. Elsevier, Amsterdam, pp 1–37

    Chapter  Google Scholar 

  9. Wheland GW (1955) Resonance in organic chemistry. Wiley, New York

    Google Scholar 

  10. Klein DJ (1983) Valence bond theory for conjugated hydrocarbons. Pure Appl Chem 55:299–306

    Article  CAS  Google Scholar 

  11. Klein DJ, Seitz WA (1988) Pauling-Wheland resonance theory of benzenoid hydrocarbons. J Mol Struct (Theochem) 169:167–181

    Article  Google Scholar 

  12. Klein DJ (1990) Semiempirical valence bond views for benzenoid hydrocarbons. Topics Curr Chem 153:57–83

    Article  CAS  Google Scholar 

  13. Pauling L, Brockway LO, Beach JY (1935) The dependence of interatomic distance on single bond—double bond resonance. J Am Chem Soc 57:2705–2709

    Article  CAS  Google Scholar 

  14. Longuet-Higgins HC (1950) Resonance structures and MO in unsaturated hydrocarbons. J Chem Phys 18:265–274

    Article  CAS  Google Scholar 

  15. Dewar MSJ, Longuet-Higgins HC (1952) The correspondence between the resonance and molecular orbital theories. Proc Roy Soc Lond A214:482–493

    Article  Google Scholar 

  16. Ham NS (1958) Mobile bond orders in the resonance and molecular orbital theories. J Chem Phys 29:1229–1231

    Article  CAS  Google Scholar 

  17. Ham NS, Ruedenberg K (1958) Mobile bond orders in conjugated systems. J Chem Phys 29:1215–1223

    Article  CAS  Google Scholar 

  18. Heilbronner E (1962) Über einen graphentheoretischen Zusammenhang zwischen dem Hückel’schen MO–Verfahren und dem Formalisum der Resonanztheorie. Helv Chim Acta 50:1722–1725

    Article  Google Scholar 

  19. Herndon WC (1973) Enumeration of resonance structures. Tetrahedron 29:3–12

    Article  CAS  Google Scholar 

  20. Cvetković D, Gutman I, Trinajstić N (1974) Graph theory and molecular orbitals. VII. The role of resonance structures. J Chem Phys 61:2700–2706

    Google Scholar 

  21. Kiang YS (1980) Determinant of adjacency matrix and Kekulé structures. Int J Quantum Chem Quantum Chem Symp 14:541–547

    Google Scholar 

  22. Wilcox CF (1968) Stability of molecules containing (4n)-rings. Tetrahedron Lett 9:795–800

    Article  Google Scholar 

  23. Wilcox CF (1969) Stability of molecules containing nonalternant rings. J Am Chem Soc 91:2732–2736

    Article  CAS  Google Scholar 

  24. Gutman I, Trinajstić N (1975) On the parity of Kekulé structures. Croat Chem Acta 47:35–39

    CAS  Google Scholar 

  25. Gutman I, Randić M, Trinajstić N (1978) Kekulé structures and topology. III. On inseparability of Kekulé structures. Rev Roum Chim 23:383–395

    CAS  Google Scholar 

  26. Cvetković D, Gutman I, Trinajstić N (1972) Kekulé structures and topology. Chem Phys Lett 16:614–616

    Article  Google Scholar 

  27. Graovac A, Gutman I, Trinajstić N (1977) Topological approach to the chemistry of conjugated molecules. Springer, Berlin

    Book  Google Scholar 

  28. Lovász L, Plummer MD (1986) Matching theory. North-Holland, Amsterdam

    Google Scholar 

  29. Zhang H (2006) Z-Transformation graphs of perfect matchings of plane bipartite graphs: a survey. MATCH Commun Math Comput Chem 56:457–476

    Google Scholar 

  30. Vukičević D (2011) Applications of perfect matchings in chemistry. In: Dehmer M (ed) Structural analysis of complex networks. Birkhäuser, Dordrecht, pp 463–482

    Chapter  Google Scholar 

  31. Herndon WC (1973) Resonance energies of aromatic hydrocarbons. A quantitative test of resonance theory. J Am Chem Soc 95:2404–2406

    Article  CAS  Google Scholar 

  32. Simpson WT (1953) On the use of structures as an aid in understanding π -electron spectra. J Am Chem Soc 75:597–603

    Article  CAS  Google Scholar 

  33. Herndon WC (1974) Resonance theory and the enumeration of Kekulé structures. J Chem Educ 51:10–15

    Article  CAS  Google Scholar 

  34. Herndon WC, Ellzey ML (1974) Resonance theory. V. Resonance energies of benzenoid and nonbenzenoid π systems. J Am Chem Soc 96:6631–6642

    Article  CAS  Google Scholar 

  35. Herndon WC (1980) Structure–resonance theory—A review of applications to π-hydrocarbon systems. Israel J Chem 20:270–275

    Article  CAS  Google Scholar 

  36. Herndon WC (1981) Notes on valence bond theory, structure–resonance theory, and graph theory. MATCH Commun Math Comput Chem 11:3–11

    CAS  Google Scholar 

  37. Klein DJ, Schmalz TG (1989) Exact ground state for a Herndon-Simpson model in resonance–theoretic cluster expansion. Int J Quantum Chem 35:373–383

    Article  Google Scholar 

  38. Gutman I, Cyvin SJ (1989) Introduction to the theory of benzenoid hydrocarbons. Springer, Berlin

    Book  Google Scholar 

  39. Hall GG (1991) Aromaticity measured by Kekulé structures. Int J Quantum Chem 39:605–613

    Article  CAS  Google Scholar 

  40. Randić M (2003) Aromaticity of polycyclic conjugated hydrocarbons. Chem Rev 103:3449–3606

    Article  CAS  Google Scholar 

  41. Gutman I, Stanković S (2007) Why is phenanthrene more stable than anthracene? Maced J Chem Chem Engin 26:111–114

    CAS  Google Scholar 

  42. Swinborne-Sheldrake R, Herndon WC, Gutman I (1975) Kekulé structures and resonance energies of benzenoid hydrocarbons. Tetrahedron Lett 16:755–758

    Article  Google Scholar 

  43. Carter PC (1949) An empirical equation for the resonance energy of polycyclic aromatic hydrocarbons. Trans Faraday Soc 45:597–602

    Article  CAS  Google Scholar 

  44. Hall GG (1973) A graphical model of a class of molecules. Int J Math Educ Sci Technol 4:233–240

    Article  Google Scholar 

  45. Gutman I, Trinajstić N, Wilcox CF (1975) Graph theory and molecular orbitals—X. The number of Kekulé structures and the thermodynamic stability of conjugated systems. Tetrahedron 31:143–146

    Article  CAS  Google Scholar 

  46. Cioslowski J (1987) A unified theory of the stability of benzenoid hydrocarbons. Int J Quantum Chem 31:581–590

    Article  CAS  Google Scholar 

  47. Cioslowski J (1990) A final solution of the problem concerning the (N, M, K)-dependence of the total π-electron energy of conjugated systems. MATCH Commun Math Comput Chem 25:83–93

    CAS  Google Scholar 

  48. Gutman I, Hall GG (1992) Linear dependence of total π-electron energy of benzenoid hydrocarbons on Kekulé structure count. Int J Quantum Chem 41:667–672

    Article  CAS  Google Scholar 

  49. Gutman I (1999) On the Hall rule in the theory of benzenoid hydrocarbons. Int J Quantum Chem 74:627–632

    Article  CAS  Google Scholar 

  50. Gutman I (1992) Total π-electron energy of benzenoid hydrocarbons. Topics Curr Chem 162:29–63

    Article  CAS  Google Scholar 

  51. Gutman I (2005) Topology and stability of conjugated hydrocarbons. The dependence of total π-electron energy on molecular topology. J Serb Chem Soc 70:441–456

    Article  CAS  Google Scholar 

  52. Clar E, Stewart DG (1953) Aromatic hydrocarbons. XLV. Triangulene derivatives. J Am Chem Soc 75:2667–2672

    Article  CAS  Google Scholar 

  53. Clar E, Kemp W, Stewart DG (1958) The significance of Kekulé structures for the stability of aromatic systems. Tetrahedron 3:325–333

    Article  CAS  Google Scholar 

  54. Herndon WC (1974) Thermochemical parameters for benzenoid hydrocarbons. Thermochim Acta 8:225–237

    Article  CAS  Google Scholar 

  55. Herndon WC, Biedermann PU, Agranat I (1998) Molecular structure parameters and predictions of enthalpies of formation for catacondensed and pericondensed polycyclic aromatic hydrocarbons. J Org Chem 63:7445–7448

    Article  CAS  Google Scholar 

  56. Herndon WC, Connor DA, Li P (1990) Structure–enthalpy relationships in polycyclic cata-condensed aromatic hydrocarbons. Pure Appl Chem 62:435–444

    Article  CAS  Google Scholar 

  57. Herndon WC (1975) Resonance theory. VIII. Reactivities of benzenoid hydrocarbons. J Org Chem 40:3583–3586

    Article  CAS  Google Scholar 

  58. Wilcox CF, Gutman I, Trinajstić N (1975) Graph theory and molecular orbitals—XI. Aromatic substitution. Tetrahedron 31:147–152

    Article  CAS  Google Scholar 

  59. Biermann D, Schmidt W (1980) Diels-Alder reactivity of polycyclic aromatic hydrocarbons. 1. Acenes and benzologs. J Am Chem Soc 102:3163–3173

    Article  CAS  Google Scholar 

  60. Biermann D, Schmidt W (1980) Diels-Alder reactivity of polycyclic aromatic hydrocarbons. 2. Phenes and starphenes. J Am Chem Soc 102:3173–3181

    Article  CAS  Google Scholar 

  61. Hall GG (1988) Resonance and reactivity. J Mol Struct (Theochem) 169:233–244

    Article  Google Scholar 

  62. Gutman I (1998) Topologically activated sites in benzenoid hydrocarbons. Polyacenes and benzo–annelated polyacenes. J Serb Chem Soc 63:987–993

    CAS  Google Scholar 

  63. Herndon WC (1976) Ionization potentials of π-molecular hydrocarbons. J Am Chem Soc 98:887–889

    Article  CAS  Google Scholar 

  64. Eilfeld P, Schmidt W (1981) Resonance theoretical approach to the calculation of the first IP’s of polycyclic aromatics. J Electron Spectr Rel Phenom 24:101–120

    Article  CAS  Google Scholar 

  65. Randić M (1974) On the characterization of local aromatic properties of benzenoid hydrocarbons. Tetrahedron 30:2067–2074

    Article  Google Scholar 

  66. Randić M (1975) Graph theoretical approach to local and overall aromaticity of benzenoid hydrocarbons. Tetrahedron 31:1477–1481

    Article  Google Scholar 

  67. Randić M (1976) Conjugated circuits and resonance energies of benzenoid hydrocarbons. Chem Phys Lett 38:68–70

    Article  Google Scholar 

  68. Randić M (1977) Aromaticity and conjugation. J Am Chem Soc 99:444–450

    Article  Google Scholar 

  69. Randić M (1977) A graph theoretical approach to conjugation and resonance energies of hydrocarbons. Tetrahedron 33:1905–1920

    Article  Google Scholar 

  70. Klein DJ (1992) Aromaticity via Kekulé structures and conjugated circuits. J Chem Educ 69:691–694

    Article  CAS  Google Scholar 

  71. Gutman I, Cyvin SJ (1989) Conjugated circuits in benzenoid hydrocarbons. J Mol Struct (Theochem) 184:159–163

    Article  Google Scholar 

  72. Randić M, Nikolić S, Trinajstić N (1987) The conjugated circuit model: on the selection of parameters for computing the resonance energies. In: King RB, Rouvray DH (eds) Graph theory and topology in chemistry. Elsevier, Amsterdam, pp 429–447

    Google Scholar 

  73. Randić M, Trinajstić N (1987) Critical test for resonance energies. J Am Chem Soc 109:6923–6926

    Article  Google Scholar 

  74. Ciesielski A, Krygowski TM, Cyrański MK, Balaban AT (2011) Defining rules of aromaticity: a unified approach to the Hückel, Clar and Randić concepts. Phys Chem Chem Phys 13:3737–3747

    Article  CAS  Google Scholar 

  75. Randić M, Balaban AT (2004) Partitioning of π-electrons in rings of polycyclic conjugated hydrocarbons. Part 1: catacondensed benzenoids. Polyc Arom Comp 24:173–193

    Google Scholar 

  76. Balaban AT, Randić M (2004) Partitioning of π-electrons in rings of polycyclic benzenoid hydrocarbons. 2. Catacondensed coronoids. J Chem Inf Comput Sci 44:50–59

    Article  CAS  Google Scholar 

  77. Balaban AT, Randić M (2004) Partitioning of π-electrons in rings of polycyclic conjugated hydrocarbons. Part 3. Perifusenes. New J Chem 28:800–806

    Article  CAS  Google Scholar 

  78. Balaban AT, Randić M (2004) Partitioning of π-electrons in rings of polycyclic conjugated hydrocarbons. 5. Nonalternant hydrocarbons. J Chem Inf Comput Sci 44:1701–1707

    Article  CAS  Google Scholar 

  79. Randić M (2004) Algebraic Kekulé formulas for benzenoid hydrocarbons. J Chem Inf Comput Sci 44:365–372

    Article  CAS  Google Scholar 

  80. Gutman I, Vukičević D, Graovac A, Randić M (2004) Algebraic Kekulé structures of benzenoid hydrocarbons. J Chem Inf Comput Sci 44:296–299

    Article  CAS  Google Scholar 

  81. Gutman I, Morikawa T, Narita S (2004) On π-electron content of bonds and rings in benzenoid hydrocarbons. Z Naturforsch 59a:295–298

    Google Scholar 

  82. Balaban AT, Randić M (2005) Partitioning of π-electrons in rings of polycyclic conjugated hydrocarbons. 6. Comparisons with other methods for estimating the local aromaticity of rings in polycyclic benzenoids. J Math Chem 37:443–453

    Article  CAS  Google Scholar 

  83. Randić M, Balaban AT (2006) Partitioning of π-electrons in rings for Clar structures of benzenoid hydrocarbons. J Chem Inf Model 46:57–64

    Article  CAS  Google Scholar 

  84. Balaban AT, Randić M (2008) Correlations between various ways of accounting for the distribution of π-electrons in benzenoids. New J Chem 32:1071–1078

    Article  CAS  Google Scholar 

  85. Zubarev DY, Frenklach DY, Lester WA (2012) From aromaticity to self–organized criticality in graphene. Phys Chem Chem Phys 14:12075–12078

    Article  CAS  Google Scholar 

  86. Herndon WC (1974) Resonance theory. VI. Bond orders. J Am Chem Soc 96:7605–7614

    Article  CAS  Google Scholar 

  87. Herndon WC, Párkányi C (1976) π-Bond orders and bond lengths. J Chem Educ 53:689–692

    Article  CAS  Google Scholar 

  88. Párkányi C, Herndon WC (1978) Bond lengths and bond orders in π-electron heterocycles. Phosphorus Sulphur 4:1–7

    Google Scholar 

  89. Pauling L (1980) Bond numbers and bond lengths in tetrabenzo[de, no, st, c1, d1]heptacene and other condensed aromatic hydrocarbons: a valence–bond treatment. Acta Cryst B 36:1898–1901

    Article  Google Scholar 

  90. Goddard R, Haenel MW, Herndon WC, Krüger C, Zander M (1995) Crystallization of large planar polycyclic aromatic hydrocarbons: the molecular and crystal structures of hexabenzo[bc, ef, hi, kl, no, qr]coronene and benzo[1,2,3-bc:4,5,6-b’c’]dicoronene. J Am Chem Soc 117:30–41

    Article  CAS  Google Scholar 

  91. Narita S, Morikawa T, Shibuya T (2000) Linear relationship between the bond lengths and the Pauling bond orders in fullerene molecules. J Mol Struct (Theochem) 532:37–40

    Article  CAS  Google Scholar 

  92. Randić M (2010) Graph theoretical approach to π-electron currents in polycyclic conjugated hydrocarbons. Chem Phys Lett 500:123–127

    Article  CAS  Google Scholar 

  93. Gomes JANF, Mallion RB (2001) Aromaticity and ring currents. Chem Rev 101:1349–1383

    Article  CAS  Google Scholar 

  94. Minkin VI, Glukhovtsev MN, Simkin BY (1994) Aromaticity and antiaromaticity. Electronic and structural aspects. Wiley, New York

    Google Scholar 

  95. Aihara J (2006) Circuit resonance energy: a key quantity that links energetic and magnetic criteria of aromaticity. J Am Chem Soc 128:2873–2879

    Article  CAS  Google Scholar 

  96. Bultinck P, Fias S, Ponec R (2006) Local aromaticity in polycyclic aromatic hydrocarbons: electron delocalization versus magnetic indices. Chem Eur J 12:8813–8818

    Article  CAS  Google Scholar 

  97. Stanger A (2009) What is aromaticity: a critique of the concept of aromaticity—can it really be defined?. Chem Commun 1939–1947

    Google Scholar 

  98. Ciesielski A, Krigowski TM, Cyrański MK, Dobrowolski MA, Aihara J (2009) Graph–topological approach to magnetic properties of benzenoid hydrocarbons. Phys Chem Chem Phys 11:11447–11455

    Article  CAS  Google Scholar 

  99. Solá M, Feixas F, Jiménez-Halla JOC, Matito E, Poater J (2010) A critical assessment of the performance of magnetic and electronic indices of aromaticity. Symmetry 2:1156–1179

    Article  CAS  Google Scholar 

  100. Randić M, Plavšić D, Vukičević D (2011) π-Electron currents in fully aromatic benzenoids. J Indian Chem Soc 88(2011):13–23

    Google Scholar 

  101. Randić M, Novič M, Vračko M, Plavšić D (2012) π-Electron currents in polycyclic conjugated hydrocarbons: coronenene and its isomers having five and seven member rings. Int J Quantum Chem 112:972–985

    Article  CAS  Google Scholar 

  102. Randić M, Vukivcević D, Novič M, Plavšić D (2012) π-Electron currents in large fully aromatic benzenoids. Int J Quantum Chem 112:2456–2462

    Article  CAS  Google Scholar 

  103. Randić M, Novič M, Plavšić D (2012) π-Electron currents in fixed π-sextet aromatic benzenoids. J Math Chem 50:2755–2774

    Article  CAS  Google Scholar 

  104. Randić M, Vukičević D, Balaban AT, Vračko M, Plavvsić D (2012) Conjugated circuits currents in hexabenzocoronene and its derivatives formed by joining proximal carbons. J Comput Chem 33:1111–1122

    Article  CAS  Google Scholar 

  105. Fries K (1927) Über bicyclische Verbindungen und ihren Vergleich mit dem Naphthalin, III Mitteilung. Ann Chem 454:121–324

    Article  CAS  Google Scholar 

  106. Gründler W (1982) Signifikante Elektronenstrukturen für benzenoide Kohlenwasserstoffe. Wiss Z Univ Halle 31:97–116

    Google Scholar 

  107. Graovac A, Gutman I, Randić M, Trinajstić N (1973) Kekulé index for valence bond structures of conjugated polycyclic systems. J Am Chem Soc 95:6267–6273

    Article  CAS  Google Scholar 

  108. Sedlar J, Anđelić I, Gutman I, Vukičević D, Graovac A (2006) Vindicating the Pauling–bond–order concept. Chem Phys Lett 427:418–420

    Google Scholar 

  109. Clar E (1972) The aromatic sextet. Wiley, London

    Google Scholar 

  110. Solá M (2013) Forty years of Clar’s aromatic π-sextet rule. Frontiers Chem 1(22):1–8

    Google Scholar 

  111. Hall GG (1977) On the eigenvalues of molecular graphs. Mol Phys 33:551–557

    Article  CAS  Google Scholar 

  112. Gutman I, Marković S, Hall GG (1995) Revisiting a simple regularity for benzenoid hydrocarbons: total π-electron energy versus the number of Kekulé structures. Chem Phys Lett 234:21–24

    Article  CAS  Google Scholar 

  113. Gutman Radenković (2006) Extending and modifying the Hall rule. Chem Phys Lett 423:382–385

    Article  CAS  Google Scholar 

  114. Radenković S, Gutman I (2009) Stability order of isomeric benzenoid hydrocarbons and Kekulé structure count. J Serb Chem Soc 74:155–158

    Article  CAS  Google Scholar 

  115. Cioslowski J, Dobrowolski JC (2003) Structural dependence of thermodynamic stability of unbranched catacondensed benzenoid hydrocarbons. Chem Phys Lett 371:317–320

    Article  CAS  Google Scholar 

  116. Cyvin SJ, Gutman I (1988) Kekulé Structures in Benzenoid Hydrocarbons. Springer, Berlin

    Book  Google Scholar 

  117. Gutman I (1990) Nonaromatic benzenoid hydrocarbons. Pure Appl Chem 62:429–434

    Article  CAS  Google Scholar 

  118. Gutman I (2010) Kekulé structures in fluoranthenes. Z Naturforsch 65a:473–476

    Google Scholar 

  119. Gutman I, Stanković S, Kovačević R, Ɖurvđević J, Furtula B (2005) Anomalous cyclic conjugation in benzenoid molecules with a small number of Kekulé structures. Indian J Chem 44A:1751–1755

    CAS  Google Scholar 

  120. Gutman I, Marković S, Jeremić S (2010) A case of breakdown of the Kekulé–structure model. Polyc Arom Comp 30:240–246

    Article  CAS  Google Scholar 

  121. Vukičević D, Ɖurvđević J, Gutman I (2012) Limitations of Pauling bond order concept. Polyc Arom Comp 32:36–47

    Google Scholar 

  122. Marković S, Ɖurvđević J, Jeremić S, Gutman I (2010) Diradical character of some fluoranthenes. J Serb Chem Soc 75:1241–1249

    Google Scholar 

  123. Marković, S., Ɖurvđević, J., Jeremić, J., Gutman, I.: triplet fluoranthenes: aromaticity versus unpaired electrons, J Mol Model 17, 805–810 (2011)

    Google Scholar 

  124. Gutman I (2005) Cyclic conjugation energy effects in polycyclic π-electron systems. Monatsh Chem 136:1055–1069

    Article  CAS  Google Scholar 

  125. Gutman I (2010) Theory of the PCP effect and related phenomena. J Math Chem 47:1309–1312

    Article  CAS  Google Scholar 

  126. Gutman I, Radenković S, Linert W (2010) Pairwise energy effect of cyclic conjugation in benzo–annelated perylene. Monatsh Chem 141:401–407

    Article  CAS  Google Scholar 

  127. Balaban AT, Gutman I, Jeremić S, Ɖurvđević J (2011) Effect of benzo–annelation on cyclic conjugation. Monatsh Chem 142:53–57

    Article  CAS  Google Scholar 

  128. Fatoorehchi, H., Gutman, I., Abolghasemi, H (in press) A combined technique for computation of energy–effect of cycles in conjugated molecules. J Math Chem

    Google Scholar 

  129. Aihara J (2006) Circuit resonance energy: a key quantity that links energetic and magnetic criteria of aromaticity. J Am Chem Soc 128:2873–2879

    Article  CAS  Google Scholar 

  130. Aihara J (2008) Topological resonance energy, bond resonance energy, and circuit resonance energy. J Phys Org Chem 21:79–85

    Article  CAS  Google Scholar 

  131. Chauvin R, Lepetit C, Fowler PW, Malrieu JP (2010) The chemical roots of the matching polynomial. Phys Chem Chem Phys 12:5295–5306

    Article  CAS  Google Scholar 

  132. Chauvin R, Lepetit C (2013) The fundamental chemical equation of aromaticity. Phys Chem Chem Phys 15:3855–3860

    Article  CAS  Google Scholar 

  133. Gutman I, Turković N, Jovičić J (2004) Cyclic conjugation in benzo-annelated perylenes: how empty is the “empty” ring? Monatsh Chem 135:1389–1394

    Article  CAS  Google Scholar 

  134. Gutman I, Balaban AT (2011) Simple mathematical model for the effect of benzo-annelation on cyclic conjugation. J Serb Chem Soc 76:1505–1511

    Article  CAS  Google Scholar 

  135. Radenković S, Ɖurvđević J, Bultick P (2012) Local aromaticity of the five–membered rings in acenaphthylene derivates. Phys Chem Chem Phys 14:14067–14078

    Article  CAS  Google Scholar 

  136. Ɖurvđević J, Gutman I (2012) Phenyl–cyclopentadienyl rule. Maced J Chem Chem Engin 31:1–15

    Google Scholar 

  137. Radenković S, Gutman I, Bultinck P (2012) A comparative study of aromaticity in tetraoxa [8] circulenes. J Phys Chem A116:9421–9430

    Google Scholar 

  138. Radenković S, Kojić J, Petronijević J, Antić M (2014) Effect of benzo–annelation on local aromaticity in heterocyclic conjugated compounds. J Phys Chem A 118:11591–11601

    Article  CAS  Google Scholar 

  139. Gutman I, Furtula B, Ɖurvđević J, Kovačević R, Stanković S (2005) Annelated perylenes: benzenoid molecules violating the Kekulé–structure–based cyclic conjugation models. J Serb Chem Soc 70:1023–1031

    Google Scholar 

  140. Radenković S, Linert W, Gutman I, Jeremić S (2009) Pairwise energy effects of rings in benzo-annelated perylenes. Indian J Chem 48A:1657–1661

    Google Scholar 

  141. Gutman I, Ɖurvđević J, Matović Z, Marković M (2012) Verifying the modes of cyclic conjugation in tetrabenzo[bc,ef,op,rs]circumanthracene. J Serb Chem Soc 77:1401–1408

    Google Scholar 

  142. Gutman I, Ɖurvđević J, Radenković S, Matović Z (2012) Anomalous cyclic conjugation in the perylene/bisanthrene homologous series. Monatsh Chem 143:1649–1653

    Google Scholar 

  143. Radenković S, Bultinck P, Gutman I, Ɖurvđević J (2012) On induced current density in the perylene/bisanthrene homologous series. Chem Phys Lett 552:151–155

    Article  CAS  Google Scholar 

  144. Krygowski TM (1993) Crystallographic studies of inter- and intramolecular interactions reflected in aromatic character of π-electron systems. J Chem Inf Comput Sci 33:70–78

    Article  CAS  Google Scholar 

  145. Krygowski TM, Cyrański MK (1996) Separation of the energetic and geometric contributions to the aromaticity of π-electron carbocyclics. Tetrahedron 52:1713–1722

    Article  CAS  Google Scholar 

  146. Krygowski TM, Cyrański MK (2001) Structural aspects of aromaticity. Chem Rev 101:1385–1419

    Article  CAS  Google Scholar 

  147. Ragué von Schleyer P, Jiao H (1996) What is aromaticity. Pure Appl Chem 68:209–218 (1996)

    Google Scholar 

  148. Ragué von Schleyer P, Maerker C, Drausfeld A, Jiao H, van Eikema Hommes JNR (1996) Nucleus–independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318 (1996)

    Google Scholar 

  149. Giambiagi M, de Giambiagi MS, dos Santos Silva CD, de Figueiredo AP (2000) Multicenter bond indices as a measure of aromaticity. Phys Chem Chem Phys 2:3381–3392

    Google Scholar 

  150. Bultinck P, Ponec R, Van Damme S (2005) Multicenter bond indices as a new measure of aromaticity in polycyclic aromatic hydrocarbons. J Phys Org Chem 18:706–718

    Article  CAS  Google Scholar 

  151. Aihara J, Sekine R, Ishida T (2011) Electronic and magnetic characteristics of polycyclic aromatic hydrocarbons with factorizable Kekulé structure counts. J Phys Chem A 115:9314–9321

    Article  CAS  Google Scholar 

  152. Gutman I, Radenković S, Antić M, Ɖurvđević J (2013) A test of Clar aromatic sextet theory. J Serb Chem Soc 78:1539–1546

    Article  CAS  Google Scholar 

  153. Radenković S, Gutman I, Antić M (2014) A case of breakdown of the Pauling bond order concept. Chem Phys Lett 614:104–109

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Gutman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gutman, I., Radenković, S. (2016). Paradise Lost—π-Electron Conjugation in Homologs and Derivatives of Perylene. In: Chauvin, R., Lepetit, C., Silvi, B., Alikhani, E. (eds) Applications of Topological Methods in Molecular Chemistry. Challenges and Advances in Computational Chemistry and Physics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-29022-5_11

Download citation

Publish with us

Policies and ethics