Skip to main content

Quantum Chemical Topology Approach for Dissecting Chemical Structure and Reactivity

  • Chapter
  • First Online:
Applications of Topological Methods in Molecular Chemistry

Abstract

Chemical structure and bonding are key features and concepts in chemical systems which are used in deriving structure–property relationships, and hence in predicting physical and chemical properties of compounds. Even though the contemporary high standards in determination using theoretical methods and experimental techniques, questions of chemical bonds as well as their evolution along a reaction pathway are still highly controversial. We present a conceptionally approach to dissect chemical structure and reactivity (bond formation and breaking processes) in the nucleation and formation of Ag on AgVO3 provoked in this crystal by the electron-beam irradiation, and glycolic acid decomposition using concepts from quantum chemical topology. The electronic activity that drives the structure and the molecular mechanism of the reaction was identified, fully characterized, and associated with specific chemical events, bond forming/breaking processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gross L, Mohn F, Moll N, Liljeroth P, Meyer G (2009) The chemical structure of a molecule resolved by atomic force microscopy. Science 325:1110–1114

    Article  CAS  Google Scholar 

  2. Gross L, Mohn F, Moll N, Schuler B, Criado A, Guitian E, Pena D, Gourdon A, Meyer G (2012) Bond-order discrimination by atomic force microscopy. Science 337:1326–1329

    Article  CAS  Google Scholar 

  3. Lu J, Loh KP (2013) Single-molecule chemical reactions tracked at the atomic-bond level. Angew Chem Int Ed 52:13521–13523

    Article  CAS  Google Scholar 

  4. Chiang C-L, Xu C, Han Z, Ho W (2014) Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe. Science 344:885–888

    Article  CAS  Google Scholar 

  5. Bredtmann T, Ivanov M, Dixit G (2014) X-ray imaging of chemically active valence electrons during a pericyclic reaction. Nat Commun 5:5509

    Google Scholar 

  6. Kössl F, Lisaj M, Kozich V, Heyne K, Kühn O (2015) Monitoring the alcoholysis of isocyanates with infrared spectroscopy. Chem Phys Lett 621:41–45

    Article  CAS  Google Scholar 

  7. Bratos S, Wulff M, Leicknam JC, Kong Q (2015) Ultrafast chemical kinetics: elementary chemical act. Chem Phys Lett 619:88–91

    Article  CAS  Google Scholar 

  8. Öström H, Öberg H, Xin H, LaRue J, Beye M, Dell’Angela M, Gladh J, Ng ML, Sellberg JA, Kaya S, Mercurio G, Nordlund D, Hantschmann M, Hieke F, Kühn D, Schlotter WF, Dakovski GL, Turner JJ, Minitti MP, Mitra A, Moeller SP, Föhlisch A, Wolf M, Wurth W, Persson M, Nørskov JK, Abild-Pedersen F, Ogasawara H, Pettersson LGM, Nilsson A (2015) Probing the transition state region in catalytic CO oxidation on Ru. Science 347:978–982

    Google Scholar 

  9. Kim KH, Kim JG, Nozawa S, Sato T, Oang KY, Kim TW, Ki H, Jo J, Park S, Song C, Sato T, Ogawa K, Togashi T, Tono K, Yabashi M, Ishikawa T, Kim J, Ryoo R, Kim J, Ihee H, Adachi S-I (2015) Direct observation of bond formation in solution with femtosecond X-ray scattering. Nature 518:385–389

    Article  CAS  Google Scholar 

  10. Cafiero M, Adamowicz L (2004) Molecular structure in non-Born-Oppenheimer quantum mechanics. Chem Phys Lett 387:136–141

    Article  CAS  Google Scholar 

  11. Lowdin PO (1989) on the long way from the Coulombic Hamiltonian to the electronic-structure of molecules. Pure Appl Chem 61:2065–2074

    Google Scholar 

  12. Sutcliffe BT, Woolley RG (2005) Comment on ‘Molecular structure in non-Born-Oppenheimer quantum mechanics’. Chem Phys Lett 408:445–447

    Article  CAS  Google Scholar 

  13. Woolley RG (1976) Quantum-theory and molecular-structure. Adv Phys 25:27–52

    Article  CAS  Google Scholar 

  14. Woolley RG (1986) Molecular shapes and molecular-structures. Chem Phys Lett 125:200–205

    Article  CAS  Google Scholar 

  15. Woolley RG (1991) Quantum-chemistry beyond the Born-Oppenheimer approximation. Theochem-J Mol Struct 76:17–46

    Article  CAS  Google Scholar 

  16. Woolley RG (1998) Is there a quantum definition of a molecule? J Math Chem 23:3–12

    Article  CAS  Google Scholar 

  17. Fetter AL, Walecka JD (2003) Quantum theory of many-particle systems, 1st edn. Dover Publications, Mineola (New York)

    Google Scholar 

  18. Mattuck RD (1992) A guide to Feynman diagrams in the many-body problem, 2nd edn. Dover Publications, New York

    Google Scholar 

  19. Lowdin PO (1991) On the importance of theory in the future development of chemistry. Theochem 76:1–3

    Google Scholar 

  20. Schleyer PV (2005) Introduction: delocalization—Pi and Sigma. Chem Rev 105:3433–3435

    Article  CAS  Google Scholar 

  21. Popelier PLA (2007) Chemical concepts from quantum mechanics—University of Manchester, UK 4–6 Sept 2006—Preface. Faraday Dis 135:3–5

    Google Scholar 

  22. Alabugin IV, Gilmore KM, Peterson PW (2011) Hyperconjugation. Wiley Interdiscip Rev Comput Mol Sci 1:109–141

    Article  CAS  Google Scholar 

  23. Gonthier JF, Steinmann SN, Wodrich MD, Corminboeuf C (2012) Quantification of “fuzzy” chemical concepts: a computational perspective. Chem Soc Rev 41:4671–4687

    Article  CAS  Google Scholar 

  24. Earis P (ed) (2007) Chemical concepts from quantum mechanics: Faraday discussions, vol 135. The Royal Society of Chemisty, Cambridge

    Google Scholar 

  25. Primas H (1985) Can chemistry in physics be reduced. Chem unserer Zeit 19:109–119

    Article  CAS  Google Scholar 

  26. Wilson CW Jr, Goddard WA III (1970) Exchange kinetic energy, contragradience, and chemical binding. Chem Phys Lett 5:45–49

    Article  CAS  Google Scholar 

  27. Kutzelnigg W (1990) The physical origin of the chemical bond. In: Maksic ZB (ed) Theoretical models of chemical bonding: Part 2. Springer, Berlin, pp 1–43

    Google Scholar 

  28. Ruedenberg K (1962) Physical nature of chemical bond. Rev Mod Phys 34:326–376

    Article  CAS  Google Scholar 

  29. Vieira FS, Fantuzzi F, Cardozo TM, Chaer MA (2013) Nascimento, Interference energy in C-H and C-C bonds of saturated hydrocarbons: dependence on the type of chain and relationship to bond dissociation energy. J Phys Chem A 117:4025–4034

    Article  CAS  Google Scholar 

  30. Bader RFW, Henneker WH (1965) Ionic bond. J Am Chem Soc 87:3063–000

    Article  CAS  Google Scholar 

  31. Sini G, Maitre P, Hiberty PC, Shaik SS (1991) Covalent, ionic and resonating single bonds. Theochem J Mol Struct 75:163–188

    Article  CAS  Google Scholar 

  32. Chesnut DB (2008) A simple definition of ionic bond order. J Chem Theory Comput 4:1637–1642

    Article  CAS  Google Scholar 

  33. Shaik S, Danovich D, Wu W, Hiberty PC (2009) Charge-shift bonding and its manifestations in chemistry. Nat Chem 1:443–449

    Article  CAS  Google Scholar 

  34. Gamez JA, Yanez M (2013) FAAF (-) (A = O, S, Se, Te) or how electrostatic interactions influence the nature of the chemical bond. J Chem Theory Comput 9:5211–5215

    Article  CAS  Google Scholar 

  35. Goddard WA III, Harding LB (1978) The description of chemical bonding from ab initio calculations. Ann Rev Phys Chem 29:363–396

    Google Scholar 

  36. Kovacs A, Esterhuysen C, Frenking G (2005) The nature of the chemical bond revisited: an energy-partitioning analysis of nonpolar bonds. Chem Eur J 11:1813–1825

    Article  CAS  Google Scholar 

  37. Ponec R, Cooper DL (2007) Anatomy of bond formation. Bond length dependence of the extent of electron sharing in chemical bonds from the analysis of domain-averaged Fermi holes. Faraday Dis 135:31–42

    Article  CAS  Google Scholar 

  38. Ponec R (2007) Anatomy of bond formation. domain-averaged fermi holes as a tool for the study of the nature of the chemical bonding in Li(2), Li(4), and F(2). J Phys Chem A 111:11294–11301

    Article  CAS  Google Scholar 

  39. Bitter T, Ruedenberg K, Schwarz WHE (2007) Toward a physical understanding of electron-sharing two-center bonds. I. General aspects. J Comput Chem 28:411–422

    Article  CAS  Google Scholar 

  40. Ruedenberg K, Schmidt MW (2009) Physical understanding through variational reasoning: electron sharing and covalent bonding. J Phys Chem A 113:1954–1968

    Article  CAS  Google Scholar 

  41. Ando K (2012) Electron wave packet modeling of chemical bonding: Floating and breathing minimal packets with perfect-pairing valence-bond spin coupling. Chem Phys Lett 523:134–138

    Article  CAS  Google Scholar 

  42. Jacobsen H (2013) Bond descriptors based on kinetic energy densities reveal regions of slow electrons—another look at aromaticity. Chem Phys Lett 582:144–147

    Article  CAS  Google Scholar 

  43. Mayer I (2014) Covalent bonding: the role of exchange effects. J Phys Chem A 118:2543–2546

    Article  CAS  Google Scholar 

  44. Shaik S, Rzepa HS, Hoffmann R (2013) One molecule, two atoms, three views, four bonds? Angew Chem Int Ed Engl 52:3020–3033

    Article  CAS  Google Scholar 

  45. Frenking G, Hermann M (2013) Critical comments on “One molecule, two atoms, three views, four bonds?”. Angew Chem Int Ed 52:5922–5925

    Article  CAS  Google Scholar 

  46. Danovich D, Shaik S, Rzepa HS, Hoffmann R (2013) A response to the critical comments on “One molecule, two atoms, three views, four bonds?”. Angew Chem Int Ed 52:5926–5928

    Article  CAS  Google Scholar 

  47. Weinhold F, Klein RA (2014) Anti-electrostatic hydrogen bonds. Angew Chem Int Ed 53:11214–11217

    Article  CAS  Google Scholar 

  48. Frenking G, Caramori GF (2015) No need for a re-examination of the electrostatic notation of the hydrogen bonding: a comment. Angew Chem Int Ed 54:2596–2599

    Article  CAS  Google Scholar 

  49. Frenking G, Krapp A (2007) Unicorns in the world of chemical bonding models. J Comput Chem 28:15–24

    Article  CAS  Google Scholar 

  50. Frenking G, Shaik S (eds) (2014) The chemical bond, vol 2. Wiley VCH, Weinheim. ISBN 978-3-527-33318-9

    Google Scholar 

  51. Schmidt MW, Ivanic J, Ruedenberg K (2014) The physical origin of covalent bonding, the chemical bond. Wiley-VCH Verlag GmbH & Co. KGaA2014, pp 1–68

    Google Scholar 

  52. Coppens P (2013) The interaction between theory and experiment in charge density analysis. Phys Scr 87:048104

    Article  CAS  Google Scholar 

  53. Volkov A, Abramov Y, Coppens P, Gatti C (2000) On the origin of topological differences between experimental and theoretical crystal charge densities. Acta Cryst Sect A 56:332–339

    Article  Google Scholar 

  54. Chopra D (2012) Advances in understanding of chemical bonding: inputs from experimental and theoretical charge density analysis. J Phys Chem A 116:9791–9801

    Article  CAS  Google Scholar 

  55. Koritsanszky TS, Coppens P (2001) Chemical applications of X-ray charge-density analysis. Chem Rev 101:1583–1628

    Article  CAS  Google Scholar 

  56. Gavezzotti A (2013) Crystal formation and stability: physical principles and molecular simulation. Cryst Res Technol 48:793–810

    Article  CAS  Google Scholar 

  57. Feynman RP (1939) Forces in molecules. Phys Rev 56:340–343

    Article  CAS  Google Scholar 

  58. Gatti C (2005) Chemical bonding in crystals: new directions. Zeitschrift Fur Kristallographie 220:399–457

    CAS  Google Scholar 

  59. Mulliken RS (1928) Assignment of quantum numbers for electrons in molecules. I. Phys Rev 32:186–222

    Article  CAS  Google Scholar 

  60. Heitler W, London F (1927) Reciprocal action of neutral atoms and homopolar combination according to quantum mechanics. Z Angew Phys 44:455–472

    CAS  Google Scholar 

  61. Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  62. Gillespie RJ, Nyholm RS (1957) Inorganic stereochemistry. Quart Rev 11:339–380

    Article  CAS  Google Scholar 

  63. Woodward RB, Hoffmann R (1970) The conservation of orbital symmetry. Verlag Chemie GmbH, Academic Press, Weinheim New York

    Google Scholar 

  64. Fukui K (1971) Recognition of stereochemical paths by orbital interaction. Acc Chem Res 4:57–64

    Article  CAS  Google Scholar 

  65. Shaik SS, Hiberty PC (2008) A chemist’s guide to valence bond theory. Wiley-Interscience, Hoboken

    Google Scholar 

  66. Marcus RA (1964) Chemical + electrochemical electron-transfer theory. Annu Rev Phys Chem 15:155–196

    Article  CAS  Google Scholar 

  67. Collard K, Hall GG (1977) Orthogonal trajectories of the electron density. Int J Quantum Chem 12:623–637

    Article  CAS  Google Scholar 

  68. Bader RFW (1975) Molecular fragments or chemical bonds. Acc Chem Res 8:34–40

    Article  CAS  Google Scholar 

  69. Matta CF, Boyd RJ (2007) The Quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH, Weinheim

    Book  Google Scholar 

  70. Nasertayoob P, Shahbazian S (2008) The topological analysis of electronic charge densities: a reassessment of foundations. J Mol Struct Theochem 869:53–58

    Article  CAS  Google Scholar 

  71. Thomas LH (1927) Calculation of atomic fields. Proc Camb Philos Soc 33:542–548

    Article  Google Scholar 

  72. Dirac PAM (1930) Exchange phenomena in the Thomas atom. Proc Camb Philos Soc 26:376–385

    Article  CAS  Google Scholar 

  73. Hohenberg PC, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  74. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:1133–000

    Article  Google Scholar 

  75. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  76. Parr RG, Yang WT (1995) Density-functional theory of the electronic-structure of molecules. Annu Rev Phys Chem 46:701–728

    Article  CAS  Google Scholar 

  77. Geerlings P, Fias S, Boisdenghien Z, De Proft F (2014) Conceptual DFT: chemistry from the linear response function. Chem Soc Rev 43:4989–5008

    Article  CAS  Google Scholar 

  78. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity—density functional viewpoint. J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  79. Parr RG, Pearson RG (1983) Absolute hardness—companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  80. Parr RG, Yang WT (1984) Density functional-approach to the frontier-electron theory of chemical-reactivity. J Am Chem Soc 106:4049–4050

    Article  CAS  Google Scholar 

  81. A tale of many electrons. Nat Mater (2014) 13:913–913

    Google Scholar 

  82. Jain A, Hautier G, Moore CJ, Ong SP, Fischer CC, Mueller T, Persson KA, Ceder G (2011) A high-throughput infrastructure for density functional theory calculations. Comput Mater Sci 50:2295–2310

    Article  CAS  Google Scholar 

  83. Lejaeghere K, Van Speybroeck V, Van Oost G, Cottenier S (2014) Error estimates for solid-state density-functional theory predictions: an overview by means of the ground-state elemental crystals. Crit Rev Solid State Mater Sci 39:1–24

    Article  CAS  Google Scholar 

  84. Neugebauer J, Hickel T (2013) Density functional theory in materials science. Wiley Interdiscip Rev Comput Mol Sci 3:438–448

    Article  CAS  Google Scholar 

  85. Burke K (2012) Perspective on density functional theory. J Chem Phys 136:150901

    Google Scholar 

  86. Cohen AJ, Mori-Sánchez P, Yang W (2008) Insights into current limitations of density functional theory. Science 321:792–794

    Article  CAS  Google Scholar 

  87. Noury S, Krokidis X, Fuster F, Silvi B (1999) Computational tools for the electron localization function topological analysis. Comput Chem 23:597–604

    Article  CAS  Google Scholar 

  88. Popelier PLA (1996) MORPHY, a program for an automated “atoms in molecules” analysis. Comput Phys Commun 93:212–240

    Article  CAS  Google Scholar 

  89. Kohout M (2002) Chemical bonding analysis in direct space. http://www.cpfs.mpg.de/ELF

  90. Biegler-Konig F, Schonbohm J, Bayles D (2001) Software news and updates—AIM2000—a program to analyze and visualize atoms in molecules. J Comput Chem 22:545–559

    Article  Google Scholar 

  91. Otero-de-la-Roza A, Blanco MA, Pendas AM, Luana V (2009) Critic: a new program for the topological analysis of solid-state electron densities. Comput Phys Commun 180:157–166

    Article  CAS  Google Scholar 

  92. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  93. Gillespie RJ, Popelier PLA (2001) Chemical bonding and molecular geometry: from Lewis to electron densities. Oxford University Press, New York

    Google Scholar 

  94. Silvi B (1994) Importance of electrostatic interactions between nonbonded molecules in ice. Phys Rev Lett 73:842–845

    Article  CAS  Google Scholar 

  95. Merino G, Vela A, Heine T (2005) Description of electron delocalization via the analysis of molecular fields. Chem Rev 105:3812–3841

    Article  CAS  Google Scholar 

  96. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  97. Bader RFW (1985) Atoms In Molecules. Acc Chem Res 18:9–15

    Article  CAS  Google Scholar 

  98. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92:5397–5403

    Article  CAS  Google Scholar 

  99. Popelier PLA, Bremond EAG (2009) Geometrically faithful homeomorphisms between the electron density and the bare nuclear potential. Int J Quantum Chem 109:2542–2553

    Article  CAS  Google Scholar 

  100. de Courcy B, Pedersen LG, Parisel O, Gresh N, Silvi B, Pilme J, Piquemal JP (2010) Understanding selectivity of hard and soft metal cations within biological systems using the subvalence concept. 1. Application to blood coagulation: direct cation-protein electronic effects versus indirect interactions through water networks. J Chem Theory Comput 6:1048–1063

    Article  CAS  Google Scholar 

  101. Pilme J, Berthoumieux H, Robert V, Fleurat-Lessard P (2007) Unusual bond formation in aspartic protease inhibitors: a theoretical study. Chem Eur J 13:5388–5393

    Article  CAS  Google Scholar 

  102. De La Lande A, Salahub DR, Maddaluno J, Scemama A, Pilme J, Parisel O, Gerard H, Caffarel M, Piquemal J-P (2011) Rapid communication spin-driven activation of dioxygen in various metalloenzymes and their inspired models. J Comput Chem 32:1178–1182

    Article  CAS  Google Scholar 

  103. Berski S, Andrés J, Silvi B, Domingo LR (2006) New findings on the Diels−Alder Reactions. An analysis based on the bonding evolution theory. J Phys Chem A 110:13939–13947

    Article  CAS  Google Scholar 

  104. Poater J, Duran M, Sola M, Silvi B (2005) Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. Chem Rev 105:3911–3947

    Article  CAS  Google Scholar 

  105. Pauzat F, Pilme J, Toulouse J, Ellinger Y (2010) About the collapse of the 3.3 mu m CH stretching band with ionization in polycyclic aromatic hydrocarbons: configuration interaction and quantum Monte Carlo studies of the CH fragment. J Chem Phys 133:054301

    Article  CAS  Google Scholar 

  106. Rivera-Fuentes P, Aonso-Gomez JL, Petrovic AG, Seiler P, Santoro F, Harada N, Berova N, Rzepa HS, Diederich F (2010) Enantiomerically pure alleno-acetylenic macrocycles: synthesis, solid-state structures, chiroptical properties, and electron localization function analysis. Chem Eur J 16:9796–9807

    Article  CAS  Google Scholar 

  107. Popelier PL (2000) Atoms in molecules: an introduction. Pearson Education, Harlow

    Book  Google Scholar 

  108. Bader RFW (2007) Everyman’s derivation of the theory of atoms in molecules. J Phys Chem A 111:7966–7972

    Article  CAS  Google Scholar 

  109. Bader RFW (2005) The quantum mechanical basis of conceptual chemistry. Monatshefte Fur Chemie 136:819–854

    Article  CAS  Google Scholar 

  110. Cerpa E, Krapp A, Vela A, Merino G (2008) The implications of symmetry of the external potential on bond paths. Chem Eur J 14:10232–10234

    Article  CAS  Google Scholar 

  111. Krapp A, Frenking G (2007) Is this a chemical bond? A theoretical study of Ng(2)@C-60 (Ng = He, Ne, Ar, Kr, Xe). Chem Eur J 13:8256–8270

    Article  CAS  Google Scholar 

  112. Cioslowski J, Edgington L, Stefanov BB (1995) Steric Overcrowding In Perhalogenated Cyclohexanes, Dodecahedranes, And 60 Fulleranes. J Am Chem Soc 117:10381–10384

    Article  CAS  Google Scholar 

  113. Matta CF, Hernandez-Trujillo J, Tang TH, Bader RFW (2003) Hydrogen-hydrogen bonding: a stabilizing interaction in molecules and crystals. Chem Eur J 9:1940–1951

    Article  CAS  Google Scholar 

  114. Hernandez-Trujillo J, Matta CF (2007) Hydrogen-hydrogen bonding in biphenyl revisited. Struct Chem 18:849–857

    Article  CAS  Google Scholar 

  115. Sulway SA, Girshfeld R, Solomon SA, Muryn CA, Poater J, Sola M, Bickelhaupt FM, Layfield RA (2009) Alkali metal complexes of silyl-substituted ansa-(tris)allyl ligands: metal-, co-ligand- and substituent-dependent stereochemistry. Eur J Inorg Chem 4157–4167

    Google Scholar 

  116. Bader RFW (2009) Bond paths are not chemical bonds. J Phys Chem A 113:10391–10396

    Article  CAS  Google Scholar 

  117. Bader RFW (2006) Pauli repulsions exist only in the eye of the beholder. Chem Eur J 12:2896–2901

    Article  CAS  Google Scholar 

  118. Matta CF, Bader RFW (2006) An experimentalist’s reply to “What is an atom in a molecule?”. J Phys Chem A 110:6365–6371

    Article  CAS  Google Scholar 

  119. Bader RFW (2002) A comment on “some fundamental problems with zero-flux partitioning of electron densities”. Theoret Chem Acc 107:381–382

    Article  CAS  Google Scholar 

  120. Shahbazian S (2011) The mathematical soundness and the physical content of the subsystem variational procedure of the QTAIM. Int J Quantum Chem 111:4497–4500

    Article  CAS  Google Scholar 

  121. Savin A, Nesper R, Wengert S, Fässler TF (1997) ELF: The electron localization function. Angew Chem Int Ed Engl 36:1808–1832

    Article  CAS  Google Scholar 

  122. Silvi B (2003) The spin-pair compositions as local indicators of the nature of the bonding. J Phys Chem A 107:3081–3085

    Article  CAS  Google Scholar 

  123. Matito E, Silvi B, Duran M, Sola M (2006) Electron localization function at the correlated level. J Chem Phys 125:2736

    Google Scholar 

  124. Feixas F, Matito E, Duran M, Sola M, Silvi B (2010) Electron localization function at the correlated level: a natural orbital formulation. J Chem Theory Comput 6:2736–2742

    Article  CAS  Google Scholar 

  125. Chevreau H, Fuster F, Silvi B (2001) Chemical bond: myth or reality? Topological methods of bond description. Actualite Chimique 15–22

    Google Scholar 

  126. Savin A (2005) The electron localization function (ELF) and its relatives: interpretations and difficulties. J Mol Struct Theochem 727:127–131

    Article  CAS  Google Scholar 

  127. Kohout M, Wagner FR, Grin Y (2002) Electron localization function for transition-metal compounds. Theoret Chem Acc 108:150–156

    Article  CAS  Google Scholar 

  128. Savin A, Silvi B, Colonna F (1996) Topological analysis of the electron localization function applied to delocalized bonds. Can J Chem-Revue Canadienne De Chimie 74:1088–1096

    Article  CAS  Google Scholar 

  129. Kohout M, Savin A (1996) Atomic shell structure and electron numbers. Int J Quantum Chem 60:875–882

    Article  CAS  Google Scholar 

  130. Kohout M, Savin A (1997) Influence of core-valence separation of electron localization function. J Comput Chem 18:1431–1439

    Article  CAS  Google Scholar 

  131. Silvi B, Fourre I, Alikhani ME (2005) The topological analysis of the electron localization function. A key for a position space representation of chemical bonds. Monatshefte Fur Chemie 136:855–879

    Article  CAS  Google Scholar 

  132. Bader RFW (1994) Principle of stationary action and the definition of a proper open system. Phys. Rev. B 49:13348–13356

    Article  CAS  Google Scholar 

  133. Thom R (1976) Structural stability and morphogenesis. W. A. Benjamin Inc., Redding

    Google Scholar 

  134. Thom R (1977) Catastrophe theory. Nature 270:658

    Article  Google Scholar 

  135. Krokidis X, Noury S, Silvi B (1997) Characterization of elementary chemical processes by Catastrophe theory. J Phys Chem A 101:7277–7282

    Article  CAS  Google Scholar 

  136. Berski S, Andres J, Silvi B, Domingo LR (2003) The joint use of catastrophe theory and electron localization function to characterize molecular mechanisms. A density functional study of the Diels-Alder reaction between ethylene and 1,3-butadiene. J Phys Chem A 107:6014–6024

    Article  CAS  Google Scholar 

  137. Polo V, Andrés J, Castillo R, Berski S, Silvi B (2004) Understanding the molecular mechanism of the 1,3-dipolar cycloaddition between fulminic acid and acetylene in terms of the electron localization function and catastrophe theory. Chem Eur J 10:5165–5172

    Article  CAS  Google Scholar 

  138. Polo V, Andres J, Berskit S, Domingo LR, Silvi B (2008) Understanding reaction mechanisms in organic chemistry from catastrophe theory applied to the electron localization function topology. J Phys Chem A 112:7128–7136

    Article  CAS  Google Scholar 

  139. González-Navarrete P, Domingo LR, Andrés J, Berski S, Silvi B (2012) Electronic fluxes during diels-alder reactions involving 1,2-benzoquinones: mechanistic insights from the analysis of electron localization function and catastrophe theory. J Comput Chem 33:2400–2411

    Article  CAS  Google Scholar 

  140. Santos JC, Andres J, Aizman A, Fuentealba P, Polo V (2005) A theoretical study on the reaction mechanism for the Bergman cyclization from the perspective of the electron localization function and catastrophe theory. J Phys Chem A 109:3687–3693

    Article  CAS  Google Scholar 

  141. Andres J, Berski S, Domingo LR, Gonzalez-Navarrete P (2012) Nature of the ring-closure process along the rearrangement of octa-1,3,5,7-tetraene to cycloocta-1,3,5-triene from the perspective of the electron localization function and catastrophe theory. J Comput Chem 33:748–756

    Article  CAS  Google Scholar 

  142. Santos JC, Polo V, Andres J (2005) An electron localization function study of the trimerization of acetylene: reaction mechanism and development of aromaticity. Chem Phys Lett 406:393–397

    Article  CAS  Google Scholar 

  143. Polo V, Gonzalez-Navarrete P, Silvi B, Andres J (2008) An electron localization function and catastrophe theory analysis on the molecular mechanism of gas-phase identity S(N)2 reactions. Theoret Chem Acc 120:341–349

    Article  CAS  Google Scholar 

  144. Polo V, Andres J (2007) Lewis acid and substituent effects on the molecular mechanism for the nazarov reaction of penta-1,4-dien-3-one and derivatives. A topological analysis based on the combined use of electron localization function and catastrophe theory. J Chem Theory Comput 3:816–823

    Article  CAS  Google Scholar 

  145. Polo V, Andres J (2005) A joint study based on the electron localization function and catastrophe theory of the chameleonic and centauric models for the cope rearrangement of 1,5-hexadiene and its cyano derivatives. J Comput Chem 26:1427–1437

    Article  CAS  Google Scholar 

  146. González-Navarrete P, Andrés J, Berski S (2012) How a quantum chemical topology analysis enables prediction of electron density transfers in chemical reactions. The degenerated cope rearrangement of semibullvalene. J Phys Chem Lett 3:2500–2505

    Article  CAS  Google Scholar 

  147. Alikhani ME, Michelini MC, Russo N, Silvi B (2008) Topological analysis of the reaction of uranium ions (U+, U2+) with N2O in the gas phase. J Phys Chem A 112:12966–12974

    Google Scholar 

  148. Michelini MD, Sicilia E, Russo N, Alikhani ME, Silvi B (2003) Topological analysis of the reaction of Mn+ (S-7, S-5) with H2O, NH3, and CH4 molecules. J Phys Chem A 107:4862–4868

    Article  CAS  Google Scholar 

  149. Berski S, Sensato FR, Polo V, Andres J, Safont VS (2011) Olefin epoxidation by molybdenum peroxo compound: molecular mechanism characterized by the electron localization function and catastrophe theory. J Phys Chem A 115:514–522

    Article  CAS  Google Scholar 

  150. Gonzalez-Navarrete P, Sensato F, Andrés J, Longo E (2014) Oxygen atom transfer reactions from mimoun complexes to sulfides and sulfoxides. A bonding evolution theory analysis. J Phys Chem A

    Google Scholar 

  151. Andres J, Berski S, Domingo LR, Polo V, Silvi B (2011) Describing the molecular mechanism of organic reactions by using topological analysis of electronic localization function. Curr Org Chem 15:3566–3575

    Article  CAS  Google Scholar 

  152. Andrés J, González-Navarrete P, Safont VS (2014) Unraveling reaction mechanisms by means of Quantum Chemical Topology Analysis. Int J Quantum Chem 114:1239–1252

    Article  CAS  Google Scholar 

  153. Andres J, Gracia L, Gonzalez-Navarrete P, Safont VS (1053) Chemical structure and reactivity by means of quantum chemical topology analysis. Computational and Theoretical Chemistry 2015:17–30

    Google Scholar 

  154. Contreras-García J, Marqués M, Silvi B, Recio JM (2012) Bonding changes along solid-solid phase transitions using the electron localization function approach. In: Gatti C, Macchi P (eds) Modern charge-density analysis. Springer, Netherlands, pp 625–658

    Google Scholar 

  155. Chen Z, Gao S, Li R, Wei M, Wei K, Zhou H (2008) Lithium insertion in ultra-thin nanobelts of Ag2V4O11/Ag. Electrochim Acta 53:8134–8137

    Article  CAS  Google Scholar 

  156. Mai L, Xu L, Gao Q, Han C, Hu B, Pi Y (2010) Single beta-AgVO3 Nanowire H2S Sensor. Nano Lett 10:2604–2608

    Article  CAS  Google Scholar 

  157. Kittaka S, Matsuno K, Akashi H (1999) Crystal structure of alpha-AgVO3 and phase relation of AgVO3. J Solid State Chem 142:360–367

    Article  CAS  Google Scholar 

  158. Ren J, Wang W, Sun S, Zhang L, Chang J (2009) Enhanced photocatalytic activity of Bi2WO6 loaded with Ag nanoparticles under visible light irradiation. Appl Catal B-Environ 92:50–55

    Article  CAS  Google Scholar 

  159. Zhao W, Guo Y, Faiz Y, Yuan W-T, Sun C, Wang S-M, Deng Y-H, Zhuang Y, Li Y, Wang X-M, He H, Yang S-G (2015) Facile in-suit synthesis of Ag/AgVO3 one-dimensional hybrid nanoribbons with enhanced performance of plasmonic visible-light photocatalysis. Appl Catal B 163:288–297

    Article  CAS  Google Scholar 

  160. Zhao W, Liang F, Jin Z-M, Shi X-B, Yin P-H, Wang X-R, Sun C, Gao Z-Q, Liao L-S (2014) Efficient plasmonic photocatalytic activity on silver-nanoparticle-decorated AgVO3 nanoribbons. J Mater Chem A 2:13226–13231

    Article  CAS  Google Scholar 

  161. Andres J, Gracia L, Gonzalez-Navarrete P, Longo VM, Avansi W Jr, Volanti DP, Ferrer MM, Lemos PS, La Porta FA, Hernandes AC, Longo E (2014) Structural and electronic analysis of the atomic scale nucleation of Ag on alpha-Ag2WO4 induced by electron irradiation. Sci Rep 4:5391–5391

    Article  CAS  Google Scholar 

  162. Pereira WS, Andres J, Gracia L, San-Miguel MA, da Silva EZ, Longo E, Longo VM (2015) Elucidating the real-time Ag nanoparticle growth on [small alpha]-Ag2WO4 during electron beam irradiation: experimental evidence and theoretical insights. Phys Chem Chem Phys 17:5352–5359

    Google Scholar 

  163. Andrés J, Ferrer MM, Gracia L, Beltran A, Longo VM, Cruvinel GH, Tranquilin RL, Longo E (2015) A combined experimental and theoretical study on the formation of Ag filaments on β-Ag2MoO4 induced by electron irradiation. Part Part Syst Charact. doi:10.1002/ppsc.201400162

    Google Scholar 

  164. Longo E, Cavalcante LS, Volanti DP, Gouveia AF, Longo VM, Varela JA, Orlandi MO, Andres J (2013) Direct in situ observation of the electron-driven synthesis of Ag filaments on alpha-Ag2WO4 crystals. Sci Rep 3:1676

    Google Scholar 

  165. Botelho G, Sczancoski JC, Andres J, Gracia L, Longo E (2015) Experimental and theoretical study on the structure, optical properties and growth of metallic silver nanostructures in Ag3PO4. J Phys Chem C 119:6293–6306

    Google Scholar 

  166. Kresse G, Hafner J (1994) Ab-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269

    Article  CAS  Google Scholar 

  167. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  168. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  169. Konta R, Kato H, Kobayashi H, Kudo A (2003) Photophysical properties and photocatalytic activities under visible light irradiation of silver vanadates. Phys Chem Chem Phys 5:3061–3065

    Article  CAS  Google Scholar 

  170. Zhang S, Li W, Li C, Chen J (2006) Synthesis, characterization, and electrochemical properties of Ag2V4O11 and AgVO3 1-D nano/microstructures. J Phys Chem B 110:24855–24863

    Article  CAS  Google Scholar 

  171. Safont VS, Moliner V, Andres J, Domingo LR (1997) Theoretical study of the elimination kinetics of carboxylic acid derivatives in the gas phase. Decomposition of 2-chloropropionic acid. J Phys Chem A 101:1859–1865

    Article  CAS  Google Scholar 

  172. Safont VS, Andres J, Domingo LR (1998) A theoretical study on the decomposition mechanism of beta-propiolactone and beta-butyrolactone. Chem Phys Lett 288:261–269

    Article  CAS  Google Scholar 

  173. Rotinov A, Chuchani G, Andres J, Domingo LR, Safont VS (1999) A combined experimental and theoretical study of the unimolecular elimination kinetics of 2-alkoxypropionic acids in the gas phase. Chem Phys 246:1–12

    Article  CAS  Google Scholar 

  174. Domingo LR, Picher MT, Safont VS, Andres J, Chuchani G (1999) Theoretical study of the mechanisms for the alkoxyacetic acids decomposition. J Phys Chem A 103:3935–3943

    Article  CAS  Google Scholar 

  175. Chuchani G, Rotinov A, Andres J, Domingo LR, Safont VS (2001) A combined experimental and theoretical study of the homogeneous, unimolecular decomposition kinetics of 3-chloropivalic acid in the gas phase. J Phys Chem A 105:1869–1875

    Article  CAS  Google Scholar 

  176. Safont VS, Andres J, Castillo R, Chuchani G, Rotinov A, Dominguez RM, Herize A (2004) A joint experimental and theoretical study on the mechanisms of methyl 2-hydroxypropionate and methyl 2-hydroxyisobutyrate decomposition in the gas phase. J Phys Chem A 108:996–1007

    Article  CAS  Google Scholar 

  177. Domingo LR, Andres J, Moliner V, Safont VS (1997) Theoretical study of the gas phase decomposition of glycolic, lactic, and 2-hydroxyisobutyric acids. J Am Chem Soc 119:6415–6422

    Article  CAS  Google Scholar 

  178. Gaussian 09, Frisch MJ, Schlegel HB, Scuseria GE, Robb JRCMA, Scalmani G, Barone V, Mennucci B, Petersson HNGA, Caricato M, Li X, Hratchian HP, Izmaylov JBAF, Zheng G, Sonnenberg JL, Hada M, Ehara KTM, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda OKY, Nakai H, Vreven T, Montgomery Jr JA, Peralta FOJE, Bearpark M, Heyd JJ, Brothers E, Kudin VNSKN, Keith T, Kobayashi R, Normand J, Raghavachari ARK, Burant JC, Iyengar SS, Tomasi J, Cossi NRM, Millam JM, Klene M, Knox JE, Cross JB, Bakken CAV, Jaramillo J, Gomperts R, Stratmann RE, Yazyev AJAO, Cammi R, Pomelli C, Ochterski JW, Martin KMRL, Zakrzewski VG, Voth GA, Salvador JJDP, Dapprich S, Daniels AD, Farkas JBFO, Ortiz JV, Cioslowski J, Fox DJ, Wallingford CT (2010)

    Google Scholar 

  179. Fukui K (1970) A formulation of reaction coordinate. J Phys Chem 74:4161–4163

    Article  CAS  Google Scholar 

  180. Fukui K (1981) The path of chemical-reactions—the IRC approach. Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  181. Alvarez S (2015) What we mean when we talk about bonds. Chemistry World, 29 January 2015

    Google Scholar 

  182. Sutcliffe BT (1996) The development of the idea of a chemical bond. Int J Quant Chem 58:645–655

    Article  CAS  Google Scholar 

  183. Dirac PAM (1929) Quantum mechanics of many-electron systems. Proc R Soc Lond 123:714–733

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Generalitat Valenciana for PrometeoII/2014/022 and ACOMP/2014/270 projects, Ministerio de Economía y Competitividad (Spain) for project CTQ-2012-36253-C03-02, and Universitat Jaume I for project P1·1B2013-40. The authors are also grateful to the Servei d’Informàtica, Universitat Jaume I for generous allocation of computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Andrés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Andrés, J., Gracia, L., González-Navarrete, P., Safont, V.S. (2016). Quantum Chemical Topology Approach for Dissecting Chemical Structure and Reactivity. In: Chauvin, R., Lepetit, C., Silvi, B., Alikhani, E. (eds) Applications of Topological Methods in Molecular Chemistry. Challenges and Advances in Computational Chemistry and Physics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-29022-5_10

Download citation

Publish with us

Policies and ethics