Skip to main content

A Spatiotemporal Approach for Social Situation Recognition

  • Conference paper
  • 965 Accesses

Abstract

The development of virtual personal assistants requires situation awareness. For this purpose, lightweight approaches for the processing of sensor data to derive situation information from available sensor data (e.g., mobile phone data) are required.

In this paper, we propose a spatiotemporal approach to derive situational information about social interactions only based on location and time, using data collected with off-the-shelf smartphones. We examine the approach, using location traces of 163 users collected over four weeks. The proposed spatiotemporal approach shows an average social situation recognition result of \(45.8\pm 23.2\,\%\) \(F_1\)-measure across the data set using Random Forest classifiers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arcelus, A., Jones, M.H., Goubran, R., Knoefel, F.: Integration of smart home technologies in a health monitoring system for the elderly. In: 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW 2007), vol. 2, pp. 820–825. IEEE (2007)

    Google Scholar 

  2. Baumann, P., Kleiminger, W., Santini, S.: The influence of temporal and spatial features on the performance of next-place prediction algorithms. In: 15th International Conference on Ubiquitous Computing (UbiComp 2013), pp. 449–458. ACM (2013)

    Google Scholar 

  3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  4. Canzian, L., Musolesi, M.: Trajectories of depression: unobtrusive monitoring of depressive states by means of smartphone mobility traces analysis. In: 17th International Conference on Ubiquitous Computing (UbiComp 2015), pp. 1293–1304. ACM (2015)

    Google Scholar 

  5. Cranshaw, J., Toch, E., Hong, J., Kittur, A., Sadeh, N.: Bridging the gap between physical location and online social networks. In: 12th International Conference on Ubiquitous Computing (UbiComp 2010), pp. 119–128. ACM (2010)

    Google Scholar 

  6. Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Pers. Ubiquit. Comput. 10(4), 255–268 (2006)

    Article  Google Scholar 

  7. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: 2th International Conference on Knowledge Discovery and Data Mining (KDD 1996), pp. 226–231. ACM (1996)

    Google Scholar 

  8. Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.-L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)

    Article  Google Scholar 

  9. Gordon, D., Hanne, J.-H., Berchtold, M., Shirehjini, A.A.N., Beigl, M.: Towards collaborative group activity recognition using mobile devices. Mob. Netw. Appl. 18(3), 326–340 (2013)

    Article  Google Scholar 

  10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  11. Kang, J.H., Welbourne, W., Stewart, B., Borriello, G.: Extracting places from traces of locations. Mob. Comput. Commun. Rev. 9(3), 58–68 (2005)

    Article  Google Scholar 

  12. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. Explor. Newsl. 12(2), 74–82 (2011)

    Article  Google Scholar 

  13. Lane, N.D., Miluzzo, E., Hong, L., Peebles, D., Choudhury, T., Campbell, A.T.: A survey of mobile phone sensing. Commun. Mag. IEEE 48(9), 140–150 (2010)

    Article  Google Scholar 

  14. Lane, N.D., Pengyu, L., Zhou, L., Zhao, F.: Connecting personal-scale sensing and networked community behavior to infer human activities. In 16th International Conference on Ubiquitous Computing (UbiComp 2014), pp. 595–606. ACM (2014)

    Google Scholar 

  15. Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. Commun. Surv. Tutorials 15(3), 1192–1209 (2013)

    Article  Google Scholar 

  16. Schmidt, B., Benchea, S., Eichin, R., Meurisch, C.: Fitness tracker or digital personal coach: how to personalize training. In: 17th International Conference on Ubiquitous Computing (UbiComp 2015): Adjunct Publication. ACM (2015)

    Google Scholar 

  17. Schweizer, I., Bärtl, R., Schmidt, B., Kaup, F., Mühlhäuser, M.: Kraken.me mobile: the energy footprint of mobile tracking. In: 6th International Conference on Mobile Computing, Applications and Services (MobiCASE 2014), pp. 82–89. IEEE (2014)

    Google Scholar 

  18. Schweizer, I., Schmidt, B.: Kraken.me: multi-device user tracking suite. In: 16th International Conference on Ubiquitous Computing (UbiComp 2014): Adjunct Publication, pp. 853–862. ACM (2014)

    Google Scholar 

  19. Song, C., Zehui, Q., Blumm, N., Barabási, A.-L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Takata, K., Ma, J., Apduhan, B.O., Huang, R., Shiratori, N.: Lifelog image analysis based on activity situation models using contexts from wearable multi sensors. In: 2nd International Conference on Multimedia and Ubiquitous Engineering (MUE 2008), pp. 160–163. IEEE (2008)

    Google Scholar 

  21. Wang, D., Pedreschi, D., Song, C., Giannotti, F., Barabasi, A.-L.: Human mobility, social ties, and link prediction. In 17th International Conference on Knowledge Discovery and Data Mining (KDD 2011), pp. 1100–1108. ACM (2011)

    Google Scholar 

  22. Yau, S.S., Liu, J.: Hierarchical situation modeling and reasoning for pervasive computing. In: 4th Workshop on Software Technologies for Future Embedded and Ubiquitous Systems, and 2nd International Workshop on Collaborative Computing, Integration, and Assurance (SEUS-WCCIA 2006), p. 6. IEEE (2006)

    Google Scholar 

  23. Zhou, C., Frankowski, D., Ludford, P., Shekhar, S., Terveen, L.: Discovering personally meaningful places: an interactive clustering approach. ACM Trans. Inf. Syst. (TOIS) 25(3), 12 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been funded by the LOEWE initiative (Hessen, Germany) within the NICER project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Meurisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Meurisch, C., Hussain, T., Gogel, A., Schmidt, B., Schweizer, I., Mühlhäuser, M. (2015). A Spatiotemporal Approach for Social Situation Recognition. In: Sigg, S., Nurmi, P., Salim, F. (eds) Mobile Computing, Applications, and Services. MobiCASE 2015. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 162. Springer, Cham. https://doi.org/10.1007/978-3-319-29003-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29003-4_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29002-7

  • Online ISBN: 978-3-319-29003-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics