Advertisement

Several Interval-Valued Solutions of Interval-Valued Cooperative Games and Simplified Methods

  • Deng-Feng Li
Chapter

Abstract

The aim of this chapter is to develop direct and effective simplified methods for computing interval-valued cooperative games. In this chapter, we propose several commonly used and important concepts of interval-valued solutions such as the interval-valued equal division value, the interval-valued equal surplus division value, the interval-valued Shapley value, the interval-valued egalitarian Shapley value, the interval-valued discounted Shapley value, the interval-valued solidarity value, and the interval-valued generalized solidarity value as well as the interval-valued Banzhaf value. Through adding some conditions such as the size monotonicity, we prove that the aforementioned corresponding solutions of cooperative games are continuous, monotonic, and non-decreasing functions of coalitions’ values. Hereby, the aforementioned interval-valued solutions of interval-valued cooperative games can be directly and explicitly obtained by determining their lower and upper bounds, respectively. Moreover, we discuss these interval-valued solutions’ important properties. Thus, we may overcome the issues of the Moore’s interval subtraction. The feasibility and applicability of the methods proposed in this chapter are illustrated with real numerical examples.

Keywords

Interval-valued cooperative game Interval-valued equal surplus division value Interval-valued Shapley value Interval-valued solidarity value Interval-valued Banzhaf value 

References

  1. 1.
    Branzei R, Branzei O, Alparslan Gök SZ, Tijs S. Cooperative interval games: a survey. Cent Eur J Oper Res. 2010;18:397–411.CrossRefGoogle Scholar
  2. 2.
    Branzei R, Alparslan-Gök SZ, Branzei O. Cooperation games under interval uncertainty: on the convexity of the interval undominated cores. Cent Eur J Oper Res. 2011;19:523–32.CrossRefGoogle Scholar
  3. 3.
    Li D-F. Fuzzy multiobjective many-person decision makings and games. Beijing: National Defense Industry Press; 2003 (in Chinese).Google Scholar
  4. 4.
    Owen G. Game theory. 2nd ed. New York: Academic Press; 1982.Google Scholar
  5. 5.
    Moore R. Methods and applications of interval analysis. Philadelphia: SIAM Studies in Applied Mathematics; 1979.CrossRefGoogle Scholar
  6. 6.
    Branzei R, Tijs S, Alparslan-Gök SZ. How to handle interval solutions for cooperative interval games. Int J Uncertain Fuzziness Knowl Based Syst. 2010;18:123–32.CrossRefGoogle Scholar
  7. 7.
    Han W-B, Sun H, Xu G-J. A new approach of cooperative interval games: the interval core and Shapley value revisited. Oper Res Lett. 2012;40:462–8.CrossRefGoogle Scholar
  8. 8.
    Alparslan-Gök SZ, Branzei R, Tijs SH. Cores and stable sets for interval-valued games, vol. 1. Center for Economic Research, Tilburg University; 2008. p. 1–14Google Scholar
  9. 9.
    Alparslan-Gök SZ, Branzei O, Branzei R, Tijs S. Set-valued solution concepts using interval-type payoffs for interval games. J Math Econ. 2011;47:621–6.CrossRefGoogle Scholar
  10. 10.
    van den Brink R. Null or nullifying players: the difference between the Shapley value and equal division solutions. J Econ Theory. 2007;136(1):767–75.CrossRefGoogle Scholar
  11. 11.
    Casajus A, Huettner F. Null, nullifying, or dummifying players: the difference between the Shapley value, the equal division value, and the equal surplus division value. Econ Lett. 2014;122(2):167–9.CrossRefGoogle Scholar
  12. 12.
    Driessen TSH, Funaki Y. Coincidence of and collinearity between game theoretic solutions. OR Spectrum. 1991;13:15–30.CrossRefGoogle Scholar
  13. 13.
    Yager RR. OWA aggregation over a continuous interval argument with applications to decision making. IEEE Trans Syst Man Cybern Part B Cybern. 2004;34(5):1952–63.CrossRefGoogle Scholar
  14. 14.
    Hukuhara M. Integration des applications measurables dont la valeur est un compact convexe. Funkcialaj Ekvacioj. 1967;10:205–23.Google Scholar
  15. 15.
    Stefanini L. A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Set Syst. 2010;161(11):1564–84.CrossRefGoogle Scholar
  16. 16.
    Shapley LS. A value for n-person games. In: Kuhn A, Tucker A, editors. Contributions to the theory of games II, Annals of mathematical studies. Princeton: Princeton University Press; 1953. p. 307–17.Google Scholar
  17. 17.
    Radzik T, Driessen T. On a family of values for TU-games generalizing the Shapley value. Math Social Sci. 2013;65(2):105–11.CrossRefGoogle Scholar
  18. 18.
    Branzei R, Dimitrov D, Tijs S. Shapley-like values for interval bankruptcy games. Econ Bull. 2003;3:1–8.Google Scholar
  19. 19.
    Alparslan Gök SZ, Branzei R, Tijs S. The interval Shapley value: an axiomatization. Cent Eur J Oper Res. 2010;18:131–40.CrossRefGoogle Scholar
  20. 20.
    Alparslan-Gök SZ, Branzei R, Tijs S. Big boss interval games. Institute of Applied Mathematics, METU and Tilburg University, Center for Economic Research, The Netherlands, CentER DP 47 (preprint no. 103); 2008.Google Scholar
  21. 21.
    Li D-F. Linear programming approach to solve interval-valued matrix games. Omega. 2011;39(6):655–66.CrossRefGoogle Scholar
  22. 22.
    Li D-F. Linear programming models and methods of matrix games with payoffs of triangular fuzzy numbers. Heidelberg: Springer; 2016.CrossRefGoogle Scholar
  23. 23.
    Driessen T. Cooperation games: solutions and application. Dordrecht: Kluwer Academic Publisher; 1988.CrossRefGoogle Scholar
  24. 24.
    Joosten R. Dynamics, equilibria and values. PhD thesis. The Netherlands: Maastricht University; 1996.Google Scholar
  25. 25.
    Driessen T, Radzik T. A weighted pseudo-potential approach to values for TU-games. Int Trans Oper Res. 2002;9(3):303–20.CrossRefGoogle Scholar
  26. 26.
    Driessen T, Radzik T. Extensions of Hart and Mas-Colell’s consistency to efficient, linear, and symmetric values for TU-Games. In: ICM Millennium Lectures on Games, 2003. p. 129–146.Google Scholar
  27. 27.
    Casajus A, Huettner F. On a class of solidarity values. Eur J Oper Res. 2014;236(2):583–91.CrossRefGoogle Scholar
  28. 28.
    Nowak AS, Radzik T. A solidarity value for n-person transferable utility games. Int J Game Theory. 1994;23(1):43–8.CrossRefGoogle Scholar
  29. 29.
    Kamojo Y, Kongo T. Whose deletion does not affect your payoff? The difference between the Shapley value, the egalitarian value, the solidarity value, and the Banzhaf value. Eur J Oper Res. 2012;216(3):638–46.CrossRefGoogle Scholar
  30. 30.
    Casajus A, Huettner F. Null players, solidarity, and the egalitarian Shapley values. J Math Econ. 2013;49:58–61.CrossRefGoogle Scholar
  31. 31.
    Chameni Nembua C. Linear efficient and symmetric values for TU-games: sharing the joint gain of cooperation. Games Econ Behav. 2012;74:431–3.CrossRefGoogle Scholar
  32. 32.
    Banzhaf JF. Weighted voting does not work: a mathematical analysis. Rutgers Law Rev. 1965;19:317–43.Google Scholar
  33. 33.
    Laruelle A, Valenciano F. Shapley-Shubik and Banzhaf indices revisited. Math Oper Res. 2001;26:89–104.CrossRefGoogle Scholar
  34. 34.
    Owen G. Multilinear extensions and the Banzhaf value. Naval Res Logist Quart. 1975;22:741–50.CrossRefGoogle Scholar
  35. 35.
    Alonso-Meijide JM, Carreras F, Fiestras-Janeiro MG. A comparative axiomatic characterization of the Banzhaf-Owen coalitional value. Decis Support Syst. 2007;43(3):701–12.CrossRefGoogle Scholar
  36. 36.
    Pusillo L. Banzhaf like value for games with interval uncertainty. Czech Econ Rev. 2013;7:5–14.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Deng-Feng Li
    • 1
  1. 1.School of Economics and ManagementFuzhou UniversityFuzhouChina

Personalised recommendations