Skip to main content

Grapes and Gastrointestinal Health: Implications with Intestinal and Systemic Diseases

  • Chapter
  • First Online:

Abstract

The anti-inflammatory, antioxidant, or antimicrobial properties of phytochemicals found in fruits and vegetables are well documented. Phytoactive compounds and their metabolites have typically been monitored in blood or non-intestinal tissues of animals or human subjects consuming whole foods, extracts, or individual phytochemicals or examined after phytochemical treatment of cells in culture. Much less is known about the influence of polyphenols, in particular those found in grapes (e.g., anthocyanins), on intestinal health and how these polyphenols indirectly influence systemic metabolism. Notably, polyphenols may influence nutrient digestion and absorption, and gut microbiota taxa and their fermentation products, in part, because they are poorly absorbed in the upper gut and thus persist in the colon. Here, they come in direct contact with microbes, influencing microbial growth and metabolism, as well as undergoing enzymatic modification based on the available microbes. Whereas a great deal is known about the fermentation of fiber, there are gaps in the literature concerning how polyphenols influence microbial metabolism and vice versa. Therefore, this paper will focus on studies examining the influence of polyphenols in general and grape polyphenols in particular, on intestinal health, and subsequent metabolic consequences.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agte V, Khetmalis N, Nilegaonkar S, Karkamkar S, Yadav S (2010) Prebiotic potential of ‘juice grape’ varieties and some hybrids. J Sci Ind Res 69:850–854

    CAS  Google Scholar 

  • Alakomi HL, Puupponen-Pimia R, Aura A-M et al (2007) Weakening of salmonella with selected microbial metabolites of berry-derived phenolic compounds and organic acids. J Agric Food Chem 55:3905–3912

    Article  CAS  Google Scholar 

  • Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV et al (2014) A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64(6):872–883. doi:10.1136/gutjnl-2014-307142

    Article  Google Scholar 

  • Barrosa E, Van de Wiele T, Jimenez-Giron A, Munoz-Gonzalez I, Martin-Alvarez P, Moreno-Arribas M et al (2014) Lactobacillus plantarum IFPL935 impacts colonic metabolism in a simulator of the human gut microbiota during feeding with red wine polyphenols. Appl Microbiol Biotechnol 98:6805–6815

    Article  Google Scholar 

  • Bergman ZR (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 70:567–590

    CAS  Google Scholar 

  • Blaut M (2014) Gut microbiota and energy balance: role in obesity. Proc Nutr Soc 74(3):227–234. doi:10.1017/S0029665114001700

    Article  Google Scholar 

  • Bohn T (2014) Dietary factors affecting polyphenol bioavailability. Nutr Rev 72(7):429–452. doi:10.1111/nure.1214

    Article  Google Scholar 

  • Bouhiel M, Derudas B, Rigamonti E, Dievart R, Brozek J et al (2007) PPARγ activation primes human monocytes into alternatively activated M2 macrophages with anti-inflammatory properties. Cell Metab 6:137–143

    Article  Google Scholar 

  • Brinkworth G, Noakes M, Clifton P et al (2009) Comparative effects of very low-carbohydrate, high-fat and high carbohydrate, low fat weight loss diets on bowel habit and faecal short chain fatty acids and bacterial populations. Br J Nutr 101:1493–1502

    Article  CAS  Google Scholar 

  • California Table Grape Commission website (2015). Grapesfromcalifornia.com. Accessed on 20 March 2015

    Google Scholar 

  • Cantos E, Espın JC, Tomas-Barberan FA (2002) Varietal differences among the polyphenol profiles of seven table grape cultivars studied by LC-DAD-MS-MS. J Agric Food Chem 50:5691–5696

    Article  CAS  Google Scholar 

  • Cardona F, Adrés-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuño MI (2013) Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem 24:1415–1422

    Article  CAS  Google Scholar 

  • Castillo-Munoz N, Fernandez-Gonzalez M, Gomez-Alonso S, Garcıa-Romero E, Hermosın-Gutierrez I (2009) Red-color related phenolic composition of Garnacha Tintorera (Vitis vinifera L.) grapes and red wines. J Agric Food Chem 57:7883–7891

    Article  CAS  Google Scholar 

  • Chiou YS, Wu JC, Huang Q, Shahidi F, Wang YJ, Ho CT, Pan MH (2014) Metabolic and colonic microbiota transformation may enhance the bioactivities of dietary polyphenols. J Funct Foods 7:3–25

    Article  CAS  Google Scholar 

  • Chuang CC, Martinez K, Xie G, Kennedy A, Bumrungpert A et al (2010) Quercetin is equally or more effective than resveratrol in attenuating tumor necrosis factor-{alpha}-mediated inflammation and insulin resistance in primary human adipocytes. Am J Clin Nutr 92:1511–1521

    Article  CAS  Google Scholar 

  • Chuang C-C, Shen W, Chen H, Xie G, Jia W, Chung S, McIntosh M (2012) Differential effects of grape powder and its extract on glucose tolerance and chronic inflammation in high fat-fed obese mice. J Agric Food Chem 60:12458–12468

    Article  CAS  Google Scholar 

  • Cox L, Blaser M (2013) Pathways of microbe-induced obesity. Cell Metab 17:883–894

    Article  CAS  Google Scholar 

  • Cueva C, Mingo S, Munoz-Gonzalez I, Bustos I, Reguena T, del Campo R et al (2012) Antibacterial activity of wine phenolic compounds and oenological extracts against potential respiratory pathogens. Lett Appl Microbiol 54:557–563

    Article  CAS  Google Scholar 

  • Cueva C, Bartolome B, Moreno-Arribas M, Bustos I, Reguena T, Gonzalez-Manzano S et al (2015) Susceptibility and tolerance of human gut culturable aerobic microbiota to wine polyphenols. Microb Drug Resist 21:17–24

    Article  CAS  Google Scholar 

  • Cushnie TP, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356

    Article  CAS  Google Scholar 

  • Czank C, Cassidy A, Zhang Q, Morrison DJ, Preston T, Kroon PA et al (2013) Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a 13C-tracer study. Am J Clin Nutr 97:995–1003

    Article  CAS  Google Scholar 

  • De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, Bäckhed F, Mithieux G (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156:84–96

    Article  Google Scholar 

  • den Besten G, Bleeker A, Gerding A, van Eunen K, Havinga R, van Dijk T et al (2015) Short chain fatty acids protect against high-fat diet-induced obesity via a PPARg-dependent switch from lipogenesis to lipolysis. Diabetes 64(7):2398–2408

    Article  Google Scholar 

  • Devkota S, Wang Y, Musch M, Leone V, Fehlner-Peach H, Nadimpalli A et al (2012) Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in IL10-/- mice. Nature 487:104–108

    CAS  Google Scholar 

  • Dolara P, Luceri C, De Filippo C, Giovannelli L, Caderni G, Cecchini C et al (2005) Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage, and gene expression profiles of colonic mucosa in F344 rats. Mutat Res 591:237–246

    Article  CAS  Google Scholar 

  • El Oufir L, Flourié B, Bruley des Varannes S, Barry JL, Cloarec D, Bornet F (1996) Relations between transit time, fermentation products, and hydrogen consuming flora in healthy humans. Gut 38:870–877

    Article  Google Scholar 

  • Ergun O, Ergun G, Oktem G, Selvi N, Dogan H et al (2007) Enteral resveratrol supplementation attenuates intestinal epithelial inducible nitric oxide synthase activity and mucosal damage in experimental necrotizing enterocolitis. J Pediatr Surg 42:1687–1694

    Article  Google Scholar 

  • Etxeberria U, Arias N, Boque N, Macarulla M, Portillo M, Martinez J, Milagro F (2015) Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed mice. J Nutr Biochem 26:651–660. doi:10.1016/j.jnutbio.2015.01.002

    Article  CAS  Google Scholar 

  • Evensen N, Braun P (2009) The effects of tea polyphenols on Candida albicans: inhibition of biofilm formation and proteasome inactivation. Can J Microbiol 55:1033–1039

    Article  CAS  Google Scholar 

  • Fang XK, Gao J, Zhu DN (2008) Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity. Life Sci 82:615–622

    Article  CAS  Google Scholar 

  • Fava F, Bitau R, Griffin B, Gibson G, Tuohy K, Lovegrove J (2012) The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short chain fatty acid excretion in a metabolic syndrome at risk population. Int J Obes (Lond) 37(2):216–223. doi:10.1038/ijo.2012.33

    Article  Google Scholar 

  • Fischer-Posovszky P, Kukulus V, Tews D, Unterkircher T, Debatin KM et al (2010) Resveratrol regulates human adipocyte number and function in a Sirt1-dependent manner. Am J Clin Nutr 92:5–15

    Article  CAS  Google Scholar 

  • Forester SC, Gu Y, Lambert JD (2012) Inhibition of starch digestion by the green tea polyphenol, (–)-epigallocatechin-3-gallate. Mol Nutr Food Res 56:1647–1655

    Article  CAS  Google Scholar 

  • Galvez J, Cruz T, Crespo E, Ocete MA, Lorente MD, Sanchez de Medina F, Zarzuelo A (1997) Rutoside as mucosal protective in acetic acid-induced rat colitis. Planta Med 63:409–414

    Article  CAS  Google Scholar 

  • Gonzalez J, Keshavan N (2006) Messing with bacterial quorum sensing. Microbiol Mol Biol Rev 70(4):859–875

    Article  CAS  Google Scholar 

  • Hatayama H, Iwashita J, Kuwajima A, Abe T (2007) The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T. Biochem Biophys Res Commun 356:599–603

    Article  CAS  Google Scholar 

  • Hidalgo M, Oruna-Concha MJ, Kolida S, Walton GE, Kallithraka S, Spencer JP et al (2012) Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. J Agric Food Chem 60:3882–3890

    Article  CAS  Google Scholar 

  • Hildebrandt M, Hoffman C, Sherrill-Mix S, Keilbaught S, Hamady M, Chen Y et al (2009) High-fat diet determines the composition of the murine microbiome independently of obesity. Gastroenterology 137:1716–1724

    Article  CAS  Google Scholar 

  • Hirshfield IN, Terzulli S, O’Byrne C (2003) Weak organic acids: panoply of effects on bacteria. Sci Prog 86:245–269

    Article  CAS  Google Scholar 

  • Holst J (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87:1409–1439

    Article  CAS  Google Scholar 

  • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–206

    Article  CAS  Google Scholar 

  • Jakobek L (2015) Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem 175:556–567

    Article  CAS  Google Scholar 

  • Kemperman R, Bolca S, Roger L, Vaughan E (2010) Novel approaches for analyzing gut microbes and dietary polyphenols; challenges and opportunities. Microbiology 156:3224–3231

    Article  CAS  Google Scholar 

  • Kwon KH, Murakami A, Tanaka T, Ohigashi H (2005) Dietary rutin, but not its aglycone quercetin, ameliorates dextran sulfate sodium induced experimental colitis in mice: attenuation of pro-inflammatory gene expression. Biochem Pharmacol 69:395–406

    Article  CAS  Google Scholar 

  • Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122

    Article  CAS  Google Scholar 

  • Larrosa M, Luceri C, Vivoli E, Pagliuca C, Lodovici M, Moneti G, Dolara P (2009a) Polyphenol metabolites from colonic microbiota exert anti-inflammatory activity on different inflammation models. Mol Nutr Food Res 53:1044–1054

    Article  CAS  Google Scholar 

  • Larrosa M, Yañéz-Gascón MJ, Selma MV, González-Sarrías A, Toti S, Cerón JJ, Tomás-Barberán F, Dolara P, Espín JC (2009b) Effect of a low dose of dietary resveratrol on colon microbiota, inflammation and tissue damage in a DSS-induced colitis rat model. J Agric Food Chem 57:2211–2220

    Article  CAS  Google Scholar 

  • Lazarova D, Lee A, Wong T, Marian B, Chiaro C, Rainey C, Bordonaro M (2014) Modulation of Wnt activity and cell physiology by butyrate in LT97 microadenoma cells. J Cancer 5:203–213

    Article  CAS  Google Scholar 

  • Lechner D, Gibbons S, Bucar F (2008) Plant phenols compounds as ethidium bromide efflux inhibitors of Mycobacterium smegmatis. J Antimicrob Chemother 62:345–348

    Article  CAS  Google Scholar 

  • Lee Y, Cesario T, Wang Y, Shanbrom E, Thrupp L (2003) Antibacterial activity of vegetables and juices. Nutrition 19:994–996

    Article  CAS  Google Scholar 

  • Lee H, Jenner A, Lowa C, Lee Y (2006) Effects of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res Microbiol 157:876–884

    Article  CAS  Google Scholar 

  • Ley R, Turnbaugh P, Klein S, Gordon J (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    Article  CAS  Google Scholar 

  • Lila MA, Ribnicky DM, Rojo LE, Rojas-Silva P, Oren A, Havenaar R, Janle EM, Raskin I, Yousef GG, Grace MH (2012) Complementary approaches to gauge the bioavailability and distribution of ingested berry polyphenolics. J Agric Food Chem 60:5763–5771

    Article  CAS  Google Scholar 

  • Lührs H, Gerke T, Müller JG, Melcher R, Schauber J, Boxberge F, Scheppach W, Menzel T (2002) Butyrate inhibits NF-kappaB activation in lamina propria macrophages of patients with ulcerative colitis. Scand J Gastroenterol 37:458–466

    Article  Google Scholar 

  • Martin AR, Villegas I, LaCasa C, de la Lastra CA (2004) Resveratrol, a polyphenol found in grapes, suppresses oxidative damage and stimulates apoptosis during early colonic inflammation in rats. Biochem Pharmacol 67:1399–1410

    Article  CAS  Google Scholar 

  • Martin AR, Villegas I, Sanchez-Hidalgo M, de la Lastra CA (2006) The effects of resveratrol, a phytoalexin derived from red wines, on chronic inflammation induced in an experimentally induced colitis model. Br J Pharmacol 147:873–885

    Article  CAS  Google Scholar 

  • Maukonen J, Saarela M (2015) Human gut microbiota: does diet matter? Proc Nutr Soc 74:23–36

    Article  CAS  Google Scholar 

  • Mestdagh R, Dumas ME, Rezzi S, Kochhar S, Holmes E et al (2012) Gut microbiota modulate the metabolism of brown adipose tissue in mice. J Proteome Res 11:620–630

    Article  CAS  Google Scholar 

  • Monsen E (1988) Iron nutrition and absorption: dietary factors which impact iron availability. J Am Diet Assoc 88:786–790

    CAS  Google Scholar 

  • Neyrinck A, Van Hee V, Bindels L, Possemiers S, de Backer F, Cani P et al (2013) Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolemia in high-fat-induced obese mice: potential implication of the gut microbiota. Br J Nutr 109:802–809

    Article  CAS  Google Scholar 

  • Nicoletti I, Bello C, De Rossi A, Corradini D (2008) Identification and quantification of phenolic compounds in grapes by HPLC-PDA-ESI-MS on a semimicro separation scale. J Agric Food Chem 56:8801–8808

    Article  CAS  Google Scholar 

  • Odegaard J, Ricardo-Gonzalez R, Goforth M, Morel C, Subramanian V et al (2007) Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447:1116–1120

    Article  CAS  Google Scholar 

  • Olholm J, Paulsen SK, Cullberg KB, Richelsen B, Pedersen SB (2010) Anti-inflammatory effect of resveratrol on adipokine expression and secretion in human adipose tissue explants. Int J Obes 34:1546–1553

    Article  CAS  Google Scholar 

  • Paiotti AP, Neto RA, Marchi P, Silva RM, Pazine VL, Noguti J et al (2013) The anti-inflammatory potential of phenolic compounds in grape juice concentrate (G8000™) on 2,4,6-trinitrobenzene sulphonic acid-induced colitis. Br J Nutr 110:973–980

    Article  CAS  Google Scholar 

  • Pozuelo MJ, Torres AA, Hernandez DH, Lopez-Olivia ME, Martinez EM, Rotger R, Goni I (2012) Grape antioxidant dietary fiber stimulates lactobacillus growth in rat cecum. J Food Sci 77:H59–H62

    Article  CAS  Google Scholar 

  • Queipo-Ortuño MI, Boto-Ordóñez M, Murri M, Gomez-Zumaquero JM, Clemente-Postigo M, Estruch R et al (2012) Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr 95:1323–1334

    Article  Google Scholar 

  • Radnai B, Tucsek Z, Bognar Z, Antus C, Mark L, Berente Z, Gallyas F Jr, Sumegi B, Veres B (2009) Ferulaldehyde, a water-soluble degradation product of polyphenols, inhibits the lipopolysaccharide induced inflammatory response in mice. J Nutr 139:291–297

    Article  CAS  Google Scholar 

  • Rein MJ, Renouf M, Cruz-Hernandez C, Actis-Goretta L, Thakkar SK, da Silva PM (2013) Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. Br J Clin Pharmacol 75:588–602

    CAS  Google Scholar 

  • Ribnicky D, Roopchand D, Oren A, Grace M, Pouleve A, Lila MA, Havenaar R, Raskin I (2014) Effects of a high fat meal matrix and protein complexation on the bioaccessibility of blueberry anthocyanins using TNO gastrointestinal model (TIM-1). Food Chem 142:349–357

    Article  CAS  Google Scholar 

  • Ricote M, Glass CK (2007) PPARs and molecular mechanisms of transrepression. Biochim Biophys Acta 1771:926–935

    Article  CAS  Google Scholar 

  • Roe AJ, O’Byrne C, McLaggan D, Booth IR (2002) Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. Microbiology 148:2215–2222

    Article  CAS  Google Scholar 

  • Roediger W (1980) Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21:793–798

    Article  CAS  Google Scholar 

  • Roopchand D, Kuhn P, Poulev A, Oren A, Lila MA, Fridlender B, Raskin I (2012) Biochemical analysis and in vivo hypoglycemic activity of a grape polyphenol-soybean flour complex. J Agric Food Chem 60:8860–8865

    Article  CAS  Google Scholar 

  • Roopchand D, Kuhn P, Krueger C, Moskal K, Lila MA, Raskin I (2013) Concord grape pomace polyphenols complexed to soy protein isolate are stable and hypoglycemic in diabetic mice. J Agric Food Chem 61:11428–11433

    Article  CAS  Google Scholar 

  • Samuel B, Shaito A, Motoike T, Rey F, Backhed F, Manchester J et al (2008) Effects of gut microbiota on host adiposity are modulated by the short chain fatty-acid binding protein G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA 105:16767–16772

    Article  CAS  Google Scholar 

  • Scott KP, Martin JC, Duncan SH, Flint HJ (2013) Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. FEMS Microbiol Ecol 87:30–40

    Article  Google Scholar 

  • Segain JP, Raingeard de la Blétière D, Bourreille A, Leray V, Gervois N, Rosales C et al (2000) Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. Gut 47:397–403

    Article  CAS  Google Scholar 

  • Selma MV, Espín JC, Tomás-Barberán FA (2009) Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem 57:6485–6501

    Article  CAS  Google Scholar 

  • Sembries S, Dongowski G, Mehrlander K, Will F, Dietrich H (2006) Physiological effects of extraction juices from apple, grape, and red beet pomaces in rats. J Agric Food Chem 54:10269–10280

    Article  CAS  Google Scholar 

  • Sengottuvelan M, Nalini N (2009) Dietary supplementation with resveratrol suppresses colonic tumour incidence in 1,2-dimethylhydrazine treated rats by modulating biotransforming enzymes and aberrant crypt foci development. Chem Biol Interact 181:193–201

    Article  CAS  Google Scholar 

  • Sengottuvelan M, Nalinin N (2006) Dietary supplementation of resveratrol suppresses colonic tumour incidence in 1,2-dimethylhydrazine-treated rats by modulating biotransforming enzymes and aberrant crypt foci development. Br J Nutr 96:145–154

    Article  CAS  Google Scholar 

  • Seymour EM, Bennink MR, Watts SW, Bolling SF (2010) Whole grape intake impacts cardiac peroxisome proliferator-activated receptor and nuclear factor kappaB activity and cytokine expression in rats with diastolic dysfunction. Hypertension 55:1179–1185

    Article  CAS  Google Scholar 

  • Shen W, Wolf P, Carbonaro F, Zhong W, Reid T, Gaskins H, McIntosh M (2014) Intestinal and systemic inflammatory responses are positively associated with sulfidogenic bacteria abundance in high-fat-fed male C57BL/6J mice. J Nutr 144:1181–1197

    Article  CAS  Google Scholar 

  • Smith A, Zoetendal E, Mackie R (2005) Bacterial mechanisms to overcome inhibitory effects of dietary tannins. Microb Ecol 50:197–205

    Article  CAS  Google Scholar 

  • Sun C, Zhang F, Ge X, Yan T, Chen X et al (2007) SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 6:307–319

    Article  CAS  Google Scholar 

  • Suwannaphet W, Meeprom A, Yibchok-Anun S, Adisakwattana S (2010) Preventive effect of grape seed extract against high-fructose diet-induced insulin resistance and oxidative stress in rats. Food Chem Toxicol 48:1853–1857

    Article  CAS  Google Scholar 

  • Terra G, Montagut M, Bustos N, Llopiz A, Ardèvol C, Bladé D et al (2009) Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. J Nutr Biochem 20:201–218

    Article  Google Scholar 

  • Thompson LU, Yoon JH, Jenkins DJ et al (1984) Relationship between polyphenol intake and blood glucose response of normal and diabetic individuals. Am J Clin Nutr 39:745–751

    CAS  Google Scholar 

  • Tuohy KM, Conterno L, Gasperotti M et al (2012) Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. J Agric Food Chem 60:8776–8782

    Article  CAS  Google Scholar 

  • van Duynhoven J, Vaughan EE, Jacobs DM, Kemperman RA, van Velzen EJ, Gross G et al (2001) Metabolic fate of polyphenols in the human superorganism. Proc Natl Acad Sci USA 108(Suppl 1):4531–4538

    Google Scholar 

  • Walker AW, Duncan SH, Leitch ECM, Child MW, Flint HJ (2005) pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71(7):3692–3700

    Article  CAS  Google Scholar 

  • Wichmann A, Allahyar A, Greiner TU, Plovier H, Lundén GÖ, Larsson T, Drucker DJ, Delzenne NM, Cani PD, Bäckhed F (2013) Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe 14:582–590

    Article  CAS  Google Scholar 

  • Wong J, de Souza R, Kendall C, Emam A, Jenkins D (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40:235–243

    Article  CAS  Google Scholar 

  • Yadav S, Gite S, Nilegaonkar S, Agte V (2011) Effect of supplementation of micronutrients and phytochemicals to fructooligosaccharides on growth response of probiotics and E. coli. Biofactors 37:58–64

    Article  CAS  Google Scholar 

  • Yang Z, Kahn BB, Shi H, Xue BZ (2010) Macrophage alpha1 AMP-activated protein kinase (alpha1AMPK) antagonizes fatty acid-induced inflammation through SIRT1. J Biol Chem 285:19051–19059

    Article  CAS  Google Scholar 

  • Zhang C, Zhang M, Wang S, Han R, Cao Y, Hua W et al (2010) Interactions between gut microbiota, host genetics, and diet relevant to development of metabolic syndromes in mice. ISME J 4:232–241

    Article  CAS  Google Scholar 

  • Zhu J, Yong W, Wu X, Yu Y, Lu J et al (2008) Anti-inflammatory effect of resveratrol on TNF-alpha-induced MCP-1 expression in adipocytes. Biochem Biophys Res Commun 369:471–477

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael McIntosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Collins, B., Baldwin, J., Martinez, K., Lila, M.A., McIntosh, M. (2016). Grapes and Gastrointestinal Health: Implications with Intestinal and Systemic Diseases. In: Pezzuto, J. (eds) Grapes and Health. Springer, Cham. https://doi.org/10.1007/978-3-319-28995-3_7

Download citation

Publish with us

Policies and ethics