Skip to main content

Theory of Nuclear Quantum Dynamics Simulations

  • Chapter
  • First Online:
Quantum Dynamics and Laser Control for Photochemistry

Part of the book series: Springer Theses ((Springer Theses))

  • 577 Accesses

Abstract

In Chap. 2, we have seen that the theoretical study of a molecular system is, in a vast majority of cases, separated in two steps. In a first step, the electronic structure of the system is studied by solving the electronic Schrödinger equation with fixed nuclei. This approach, combined with geometry optimization techniques, allows one to locate the important features of the various potential energy surfaces (PESs) of the electronic states of interest. In the context of photochemistry, as seen in Chap. 3, this approach allows one to characterize the various decay pathways of the molecule after photoexcitation. This information can then be used to interpret the various decay time constants obtained from time-resolved spectroscopic measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Gatti, Molecular Quantum Dynamics (Springer, Heidelberg, 2014)

    Book  Google Scholar 

  2. J.M. Bowman, T. Carrington, H.-D. Meyer, Mol. Phys. 106, 2145 (2008)

    Article  CAS  Google Scholar 

  3. D.J. Tannor, Introduction to Quantum Mechanics, A Time-Dependent Perspective (University Science Books, California, 2007)

    Google Scholar 

  4. D. Lauvergnat, A. Nauts, J. Chem. Phys. 116, 8560 (2002)

    Article  CAS  Google Scholar 

  5. A.G. Császár, C. Fábri, T. Szidarovszky, E. Mátyus, T. Furtenbacher, G. Czakó, Phys. Chem. Chem. Phys. 14, 1085 (2012)

    Article  Google Scholar 

  6. F. Gatti, C. Iung, Phys. Rep. 484, 1 (2009)

    Article  CAS  Google Scholar 

  7. G.B. Arfken, H.J. Weber, F.E. Harris, Mathematical Methods for Physicists, 7th edn. (Academic Press, Elsevier, New York, 2012)

    Google Scholar 

  8. J.V. Lill, G.A. Parker, J.C. Light, Chem. Phys. Lett. 89, 483 (1982)

    Article  CAS  Google Scholar 

  9. R.W. Heather, J.C. Light, J. Chem. Phys. 79, 147 (1983)

    Article  CAS  Google Scholar 

  10. J.C. Light, I.P. Hamilton, J.V. Lill, J. Chem. Phys. 82, 1400 (1985)

    Article  CAS  Google Scholar 

  11. J.V. Lill, G.A. Parker, J.C. Light, J. Chem. Phys. 85, 900 (1986)

    Article  CAS  Google Scholar 

  12. J.C. Light, T. Carrington, Adv. Chem. Phys. 114, 263 (2000)

    Google Scholar 

  13. A.S. Dickinson, P.R. Certain, J. Chem. Phys. 49, 4209 (1968)

    Article  CAS  Google Scholar 

  14. M.D. Feit, J.A. Fleck Jr, A. Steiger, J. Comput. Phys. 47, 412 (1982)

    Article  CAS  Google Scholar 

  15. M.D. Feit, J.A. Fleck Jr, J. Chem. Phys. 78, 301 (1983)

    Article  CAS  Google Scholar 

  16. M.D. Feit, J.A. Fleck Jr, J. Chem. Phys. 80, 2578 (1984)

    Article  CAS  Google Scholar 

  17. H. Tal-Ezer, R. Kosloff, J. Chem. Phys. 81, 3967 (1984)

    Article  CAS  Google Scholar 

  18. T.J. Park, J.C. Light, J. Chem. Phys. 85, 5870 (1986)

    Article  CAS  Google Scholar 

  19. R. Kosloff, J. Phys. Chem. 92, 2087 (1988)

    Article  CAS  Google Scholar 

  20. C. Leforestier, R.H. Bisseling, C. Cerjan, M.D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, R. Kosloff, J. Comput. Phys. 94, 59 (1991)

    Article  Google Scholar 

  21. R. Kosloff, Annu. Rev. Phys. Chem. 45, 145 (1994)

    Article  CAS  Google Scholar 

  22. H. Song, J. Li, M. Yang, Y. Lu, H. Guo, Phys. Chem. Chem. Phys. 16, 17770 (2014)

    Article  CAS  Google Scholar 

  23. R. Otto, J. Ma, A.W. Ray, J.S. Dalutz, J. Li, H. Guo, R.E. Continetti, Science 343, 396 (2014)

    Article  CAS  Google Scholar 

  24. Y. Wang, J. Li, H. Guo, M. Yang, Theor. Chem. Acc. 133, 1555 (2014)

    Article  Google Scholar 

  25. P.M. Hundt, B. Jiang, M. van Reijzen, H. Guo, R.D. Beck, Science 344, 504 (2014)

    Article  CAS  Google Scholar 

  26. H.-D. Meyer, U. Manthe, L.S. Cederbaum, Chem. Phys. Lett. 165, 73 (1990)

    Article  CAS  Google Scholar 

  27. U. Manthe, H.-D. Meyer, L.S. Cederbaum, J. Chem. Phys. 97, 3199 (1992)

    Article  CAS  Google Scholar 

  28. M.H. Beck, A. Jäckle, G.A. Worth, H.-D. Meyer, Phys. Rep. 324, 1 (2000)

    Article  CAS  Google Scholar 

  29. H.-D. Meyer, G.A. Worth, Theor. Chem. Acc. 109, 251 (2003)

    Article  CAS  Google Scholar 

  30. H.-D. Meyer, F. Gatti, G.A. Worth, Multidimensional Quantum Dynamics: MCTDH Theory and Applications (Wiley-VCH, Weinheim, 2009)

    Book  Google Scholar 

  31. H.-D. Meyer, WIREs Comput. Mol. Sci. 2, 351 (2012)

    Article  CAS  Google Scholar 

  32. G.A. Worth, M.H. Beck, A. Jäckle, H.-D. Meyer, Computer Code, The MCTDH Package, Version 8.2, University of Heidelberg, Heidelberg, Germany, 2000; H.-D. Meyer, computer code, The MCTDH Package, Version 8.3 (2002), Version 8.4 (2007). [http://mctdh.uni-hd.de]

  33. O. Vendrell, F. Gatti, H.-D. Meyer, Angew. Chem. Int. Ed. 46, 6918 (2007)

    Article  CAS  Google Scholar 

  34. O. Vendrell, F. Gatti, D. Lauvergnat, H.-D. Meyer, J. Chem. Phys. 127, 184302 (2007)

    Article  Google Scholar 

  35. O. Vendrell, F. Gatti, H.-D. Meyer, J. Chem. Phys. 127, 184303 (2007)

    Article  Google Scholar 

  36. O. Vendrell, H.-D. Meyer, Phys. Chem. Chem. Phys. 10, 4692 (2008)

    Article  CAS  Google Scholar 

  37. O. Vendrell, F. Gatti, H.-D. Meyer, Angew. Chem. Int. Ed. 48, 352 (2009)

    Article  CAS  Google Scholar 

  38. M.D. Coutinho-Neto, A. Viel, U. Manthe, J. Chem. Phys. 121, 9207 (2004)

    Article  CAS  Google Scholar 

  39. M. Schröder, F. Gatti, H.-D. Meyer, J. Chem. Phys. 134, 234307 (2011)

    Article  Google Scholar 

  40. T. Hammer, U. Manthe, J. Chem. Phys. 136, 054105 (2012)

    Article  Google Scholar 

  41. M. Schröder, H.-D. Meyer, J. Chem. Phys. 141, 034116 (2014)

    Article  Google Scholar 

  42. G.A. Worth, H.-D. Meyer, L.S. Cederbaum, J. Chem. Phys. 105, 4412 (1996)

    Article  CAS  Google Scholar 

  43. G.A. Worth, H.-D. Meyer, L.S. Cederbaum, J. Chem. Phys. 109, 3518 (1998)

    Article  CAS  Google Scholar 

  44. G.A. Worth, H.-D. Meyer, L.S. Cederbaum, Chem. Phys. Lett. 299, 451 (1999)

    Article  CAS  Google Scholar 

  45. A. Raab, G.A. Worth, H.-D. Meyer, L.S. Cederbaum, J. Chem. Phys. 110, 936 (1999)

    Article  CAS  Google Scholar 

  46. H. Wang, J. Chem. Phys. 113, 9948 (2000)

    Article  CAS  Google Scholar 

  47. M. Nest, H.-D. Meyer, J. Chem. Phys. 117, 10499 (2002)

    Article  CAS  Google Scholar 

  48. M. Nest, H.-D. Meyer, J. Chem. Phys. 119, 24 (2003)

    Article  CAS  Google Scholar 

  49. H. Wang, M. Thoss, J. Chem. Phys. 119, 1289 (2003)

    Article  CAS  Google Scholar 

  50. U. Manthe, J. Chem. Phys. 128, 164116 (2008)

    Article  Google Scholar 

  51. O. Vendrell, H.-D. Meyer, J. Chem. Phys. 134, 044135 (2011)

    Article  Google Scholar 

  52. A. Jäckle, H.-D. Meyer, J. Chem. Phys. 104, 7974 (1996)

    Article  Google Scholar 

  53. A. Jäckle, H.-D. Meyer, J. Chem. Phys. 109, 3772 (1998)

    Article  Google Scholar 

  54. D. Peláez, H.-D. Meyer, J. Chem. Phys. 138, 014108 (2013)

    Article  Google Scholar 

  55. J.M. Bowman, S. Carter, X. Huang, Int. Rev. Phys. Chem. 22, 533 (2003)

    Article  CAS  Google Scholar 

  56. A. Chakraborty, D.G. Truhlar, J.M. Bowman, S. Carter, J. Chem. Phys. 121, 2071 (2004)

    Article  CAS  Google Scholar 

  57. H. Rabitz, O.F. Alis, J. Math. Chem. 25, 197 (1999)

    Article  CAS  Google Scholar 

  58. O.F. Alis, H. Rabitz, J. Math. Chem. 29, 127 (2001)

    Article  CAS  Google Scholar 

  59. M.H. Beck, H.-D. Meyer, Z. Phys, D 42, 113 (1997)

    Google Scholar 

  60. G.A. Worth, H.-D. Meyer, H. Köppel, L.S. Cederbaum, I. Burghardt, Int. Rev. Phys. Chem. 27, 569 (2008)

    Article  CAS  Google Scholar 

  61. H. Köppel, W. Domcke, L.S. Cederbaum, Mol. Phys. 43, 851 (1981)

    Article  Google Scholar 

  62. H. Köppel, W. Domcke, L.S. Cederbaum, Adv. Chem. Phys. 54, 59 (1984)

    Google Scholar 

  63. C. Woywod, W. Domcke, A.L. Sobolewski, H.-J. Werner, J. Chem. Phys. 100, 1400 (1994)

    Article  CAS  Google Scholar 

  64. W. Domcke, D.R. Yarkony, H. Köppel, Conical Intersections, Electronic Strucutre, Dynamics and Spectroscopy (World Scientific, New Jersey, 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Sala .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sala, M. (2016). Theory of Nuclear Quantum Dynamics Simulations. In: Quantum Dynamics and Laser Control for Photochemistry. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-28979-3_4

Download citation

Publish with us

Policies and ethics