Skip to main content

Heterogeneity in Fluctuations of Glacier with Clean Ice-Covered, Debris-Covered and Proglacial Lake in the Upper Ravi Basin, Himachal Himalaya (India), During the Past Four Decades (1971–2013)

  • Chapter
  • First Online:
Book cover Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya

Abstract

Comprehensive multi-temporal observations of Himalayan glaciers during the past half century indicate the continuous shrinkage of most of the glaciers. In addition to this, the present study analyses the fluctuations of glacier with clean ice-covered, debris-covered and proglacial lake in the upper Ravi basin, Himachal Himalaya (India), from 1971 to 2013 using high-resolution satellite datasets with supplement of field observations for selected glaciers. The study reveals the heterogeneity in fluctuations of glacier as higher terminus and frontal area change for the clean ice-covered glaciers compared to debris-covered glaciers. Field measurements for selected glaciers also suggest a retreating trend and validate the measured glacier changes using remotely sensed temporal data. Glacier retreat rates especially for debris-covered glaciers in the Ravi basin were lower than previously reported for selected glaciers in the similar basin and other basins of the Himachal Himalaya.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal A, Sharma AR, Tayal S (2014) Assessment of regional climatic changes in the Eastern Himalayan region: a study using multi-satellite remote sensing data set. Environ Monit Assess 186:6521–6536. doi:10.1007/s10661-014-3871-x

    Article  Google Scholar 

  • Ahmad S, Hasnain SI, Arha CD et al (2004) Analysis of satellite imageries for characterization of glacio-morphological features of the Gangotri Glacier, Ganga headwater, Garhwal Himalaya. Proc Work Gangotri Glacier Spec Publ Ser Surv India 80:61–67

    Google Scholar 

  • Badarinath KVS, Sharma AV, Kaskaoutis DG et al (2010) Solar dimming over the tropical urban region of Hyderabad, India: effect of increased cloudiness and increased anthropogenic Aerosols. J Geophys Res 115:1–18

    Article  Google Scholar 

  • Bahuguna IM, Rathore BP, Brahmbhatt R et al (2014) Are the Himalayan glaciers retreating? Curr Sci 106:1008–1013

    Google Scholar 

  • Bajracharya SR, Maharjan SB, Shrestha F (2014) The status and decadal change of glaciers in Bhutan from the 1980s to 2010 based on satellite data. Ann Glaciol 55:159–166. doi:10.3189/2014AoG66A125

    Article  Google Scholar 

  • Banerjee A, Shankar R (2013) On the response of Himalayan glaciers to climate change. J Glaciol 59:480–490. doi:10.3189/2013JoG12J130

    Article  Google Scholar 

  • Basnett S, Kulkarni AV, Bolch T (2013) The influence of debris cover and glacial lakes on the recession of glaciers in Sikkim Himalaya, India. J Glaciol 59:1035–1046. doi:10.3189/2013JoG12J184

    Article  Google Scholar 

  • Benn DI, Owen LA (2002) Himalayan glacial sedimentary environments: a framework for reconstructing and dating the former extent of glaciers in high mountains. Quat Int 97–98:3–25. doi:10.1016/S1040-6182(02)00048-4

    Article  Google Scholar 

  • Benn DI, Bolch T, Hands K et al (2012) Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth Sci Rev 114:156–174. doi:10.1016/j.earscirev.2012.03.008

    Article  Google Scholar 

  • Bennett G, Evans D, Carbonneau P, Twigg D (2010) Evolution of a debris-charged glacier landsystem, Kvíárjökull, Iceland. J Maps 6:40–67

    Article  Google Scholar 

  • Bhambri R, Bolch T (2009) Glacier mapping: a review with special reference to the Indian Himalayas. Prog Phys Geogr 33:672–704. doi:10.1177/0309133309348112

    Article  Google Scholar 

  • Bhambri R, Bolch T, Chaujar RK, Kulshreshtha SC (2011) Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing. J Glaciol 57:543–556. doi:10.3189/002214311796905604

    Article  Google Scholar 

  • Bhambri R, Bolch T, Chaujar RK (2012) Frontal recession of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2006, measured through high-resolution remote sensing data. Curr Sci 102:1462–1466

    Google Scholar 

  • Bhambri R, Bolch T, Kawishwar P et al (2013) Heterogeneity in glacier response in the upper Shyok valley, northeast Karakoram. Cryosph 7:1385–1398. doi:10.5194/tc-7-1385-2013

    Article  Google Scholar 

  • Bhutiyani MR, Kale VS, Pawar NJ (2007) Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Clim Change 85:159–177. doi:10.1007/s10584-006-9196-1

    Article  Google Scholar 

  • Bhutiyani MR, Kale VS, Pawar NJ (2009) Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. Int J Climatol 30:535–548. doi:10.1002/joc.1920

    Google Scholar 

  • Bolch T, Buchroithner M, Pieczonka T, Kunert A (2008a) Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data. J Glaciol 54:592–600. doi:10.3189/002214308786570782

    Article  Google Scholar 

  • Bolch T, Buchroithner MF, Peters J et al (2008b) Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery. Nat Hazards Earth Syst Sci 8:1329–1340. doi:10.5194/nhess-8-1329-2008

    Article  Google Scholar 

  • Bolch T, Menounos B, Wheate R (2010a) Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sens Environ 114:127–137. doi:10.1016/j.rse.2009.08.015

    Article  Google Scholar 

  • Bolch T, Yao T, Kang S et al (2010b) A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976–2009. Cryosphere 4:419–433. doi:10.5194/tc-4-419-2010

    Article  Google Scholar 

  • Bolch T, Pieczonka T, Benn DI (2011) Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere 5:349–358. doi:10.5194/tc-5-349-2011

    Article  Google Scholar 

  • Bolch T, Kulkarni A, Kääb A et al (2012) The state and fate of Himalayan glaciers. Science 336:310–314. doi:10.1126/science.1215828

    Article  Google Scholar 

  • Chand P, Sharma MC (2015a) Frontal changes in the Manimahesh and Tal Glaciers in the Ravi basin, Himachal Pradesh, northwestern Himalaya (India), between 1971 and 2013. Int J Remote Sens 36:4095–411310.5194/tc-5-349-2011

    Google Scholar 

  • Chand P, Sharma MC (2015b) Glacier changes in the Ravi basin, north-western Himalaya (India) during the last four decades (1971–2010/13). Glob Planet Change 135:133–147. doi:10.1016/j.gloplacha.2015.10.01310.5194/tc-5-349-2011

  • Chand P, Sharma MC (2016) Monitoring frontal changes of the Shah Glacier in the Ravi basin, Himachal Himalaya (India) from 1965 to 2013. Natl Acad Sci Lett 3935:109–114. doi:10.1007/s40009-016-0420-x. http://link.springer.com/article/10.1007%2Fs40009-016-0420-x

    Google Scholar 

  • Dimri AP, Kumar A, Satyawali PK, Ganju A (2008) Climatic variability of weather parameters over the western Himalayas: a case study. Proc Natl Snow Sci Workshop 11–12

    Google Scholar 

  • Duhan D, Pandey A, Gahalaut KPS, Pandey RP (2013) Spatial and temporal variability in maximum, minimum and mean air temperatures at Madhya Pradesh in central India. Compt Rendus Geosci 345:3–21. doi:10.1016/j.crte.2012.10.016

    Article  Google Scholar 

  • Furbish JD, Andrews JT (1984) The use of hypsometry to indicate long-term stability and response of valley glaciers to changes in mass transfer. J Glaciol 30:199–211

    Google Scholar 

  • Gardelle J, Arnaud Y, Berthier E (2011) Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Glob Planet Change 75:47–55. doi:10.1016/j.gloplacha.2010.10.003

    Article  Google Scholar 

  • Gardelle J, Berthier E, Arnaud Y, Kääb A (2013) Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 7:1263–1286. doi:10.5194/tc-7-1263-2013

    Article  Google Scholar 

  • Govindha Raj KB (2010) Remote sensing based hazard assessment of glacial lakes: a case study in Zanskar basin, Jammu and Kashmir, India. Geomatics Nat Hazards Risk 1:339–347. doi:10.1080/19475705.2010.532973

    Article  Google Scholar 

  • Granshaw FD, Fountain AG (2006) Glacier change (1958–1998) in the North Cascades National Park Complex, Washington, USA. J Glaciol 52:251–256

    Article  Google Scholar 

  • Haeberli W (1990) Glacier and permafrost signals of 20th-century warming. Ann Glaciol 4:99–101

    Google Scholar 

  • Hall DK, Bayr KJ, Schöner W et al (2003) Consideration of the errors inherent in mapping historical glacier positions in Austria from the ground and space (1893–2001). Remote Sens Environ 86:566–577

    Article  Google Scholar 

  • Hamed KH, Ramachandra Rao A (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204:182–196. doi:10.1016/S0022-1694(97)00125-X

    Article  Google Scholar 

  • Hewitt K (2007) Tributary glacier surges: an exceptional concentration at Panmah Glacier, Karakoram Himalaya. J Glaciol 53:181–188. doi:10.3189/172756507782202829

    Article  Google Scholar 

  • Hewitt K (2011) Glacier change, concentration, and elevation effects in the Karakoram Himalaya, Upper Indus Basin. Mt Res Dev 31:188–200. doi:10.1659/MRD-JOURNAL-D-11-00020.1

    Article  Google Scholar 

  • Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328:1382–1385. doi:10.1126/science.1183188

    Article  Google Scholar 

  • Immerzeel WW, Pellicciotti F, Bierkens MFP (2013) Rising river flows throughout the twenty-first Supplementary century in two Himalayan information glacierized watersheds. Nat Geosci 6:742–745. doi:10.1038/NGEO1896

    Article  Google Scholar 

  • Iturrizaga L (2011) Trends in 20th century and recent glacier fluctuations in the Karakoram Mountains. Zeitschrift für Geomorphol Suppl Issues 55:205–231. doi:10.1127/0372-8854/2011/0055S3-0059

    Article  Google Scholar 

  • Kääb A, Berthier E, Nuth C et al (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488:495–498. doi:10.1038/nature11324

    Article  Google Scholar 

  • Kargel JS, Abrams MJ, Bishop MP et al (2005) Multispectral imaging contributions to global land ice measurements from space. Remote Sens Environ 99:187–219. doi:10.1016/j.rse.2005.07.004

    Article  Google Scholar 

  • Kendall MG (1970) Rank correlation methods, 4th edn. Charles Griffin, London

    Google Scholar 

  • Kulkarni AV (2012) Monitoring Himalayan cryosphere using remote sensing techniques. J Indian Inst Sci 90:457–469

    Google Scholar 

  • Kulkarni A, Karyakarte Y (2014) Observed changes in Himalayan glaciers. Curr Sci 106:237–244

    Google Scholar 

  • Kulkarni AV, Rathore BP (2005) Alarming retreat of Parbati glacier, Beas basin, Himachal Pradesh. Curr Sci 88:1844–1850

    Google Scholar 

  • Kulkarni AV, Dhar S, Rathore BP et al (2006) Recession of samudra tapu glacier, chandra river basin, Himachal Pradesh. J Indian Soc Remote Sens 34:39–46

    Article  Google Scholar 

  • Kulkarni AV, Bahuguna IM, Rathore BP et al (2007) Glacial retreat in Himalaya using Indian Remote Sensing satellite data. Curr Sci 92:69–74

    Google Scholar 

  • Kulkarni AV, Rathore BP, Singh SK (2010) Distribution of seasonal snow cover in central and western Himalaya. Ann Glaciol 51:123–128. doi:10.3189/172756410791386445

    Article  Google Scholar 

  • Kumar R, Singh S, Singh Randhawa S et al (2014) Temperature trend analysis in the glacier region of Naradu Valley, Himachal Himalaya, India. Compt Rendus Geosci 346:213–222. doi:10.1016/j.crte.2014.09.001

    Article  Google Scholar 

  • Marh BS (1986) Geomorphology of the Ravi River. Inter-India Publications, Delhi, India

    Google Scholar 

  • Mayewski PA, Jeschke PA (1979) Himalayan and Trans-Himalayan glacier fluctuations since AD 1812. Arct Alp Res 11:267–287

    Article  Google Scholar 

  • Mehta M, Dobhal DP, Bisht MPS (2011) Change of Tipra Glacier in the Garhwal Himalaya, India, between 1962 and 2008. Prog Phys Geogr 35:721–738. doi:10.1177/0309133311411760

    Article  Google Scholar 

  • Mehta M, Dobhal DP, Kesarwani K et al (2014) Monitoring of glacier changes and response time in Chorabari Glacier, Central Himalaya, Garhwal, India. Curr Sci 107:281–289

    Google Scholar 

  • Mir RA, Jain SK, Saraf AK, Goswami A (2013) Glacier changes using satellite data and effect of climate in Tirungkhad basin located in western Himalaya. Geocarto Int 29:293–313. doi:10.1080/10106049.2012.760655

    Article  Google Scholar 

  • NASA Giovanni (2013) Ocean color radiometry online visualization and analysis. http://giovanni.gsfc.nasa.gov/giovanni/

  • Nainwal HC, Negi BDS, Chaudhary M et al (2008) Temporal changes in rate of recession: evidences from Satopanth and Bhagirath Kharak glaciers, Uttarakhand, using Total Station Survey. Curr Sci 94:653–660

    Google Scholar 

  • Nie Y, Zhang Y, Liu L, Zhang J (2010) Glacial change in the vicinity of Mt. Qomolangma (Everest), central high Himalayas since 1976. J Geogr Sci 20:667–686. doi:10.1007/s11442-010-0803-8

    Article  Google Scholar 

  • Pandey P, Venkataraman G (2013) Changes in the glaciers of Chandra–Bhaga basin, Himachal Himalaya, India, between 1980 and 2010 measured using remote sensing. Int J Remote Sens 34:5584–5597. doi:10.1080/01431161.2013.793464

    Article  Google Scholar 

  • Pandey AC, Ghosh S, Nathawat MS (2011) Evaluating patterns of temporal glacier changes in Greater Himalayan Range, Jammu & Kashmir, India. Geocarto Int 26:321–338. doi:10.1080/10106049.2011.554611

    Article  Google Scholar 

  • Paul F, Svoboda F (2009) A new glacier inventory on southern Baffin Island, Canada, from ASTER data: II. Data analysis, glacier change and applications. Ann Glaciol 50:22–31

    Article  Google Scholar 

  • Paul F, Barry RG, Cogley JG et al (2009) Recommendations for the compilation of glacier inventory data from digital sources. Ann Glaciol 50:119–126

    Article  Google Scholar 

  • Paul F, Barrand NE, Baumann S et al (2013) On the accuracy of glacier outlines derived from remote-sensing data. Ann Glaciol 54:171–182. doi:10.3189/2013AoG63A296

    Article  Google Scholar 

  • Racoviteanu AE, Paul F, Raup B et al (2009) Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA. Ann Glaciol 50:53–69

    Article  Google Scholar 

  • Raina V, Srivastava D (2008) Glacier atlas of India. Geological Society of India, Bangalore

    Google Scholar 

  • Raj KBG (2011) Recession and reconstruction of Milam Glacier, Kumaon Himalaya, observed with satellite imagery. Curr Sci 100:1420–1425

    Google Scholar 

  • Raj KBG, Remya SN, Kumar KV (2013) Remote sensing-based hazard assessment of glacial lakes in Sikkim Himalaya. Curr Sci 104:359–364

    Google Scholar 

  • Raju PVSPP, Ghosh S (2003) Role of remote sensing and digital cartography in sustainable development. India Cartogr 23:88–95

    Google Scholar 

  • Rao AR, Hamed KH, Chen H-L (2003) Nonstationarities in hydrologic and environmental time series. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Sakai A (2000) Role of supraglacial ponds in the ablation process of a debris-covered glacier in the Nepal Himalaya. Debris-Covered Glaciers. IAHS Publ. no. 265, pp 119–130

    Google Scholar 

  • Sarikaya MA, Bishop MP, Shroder JF, Olsenholler J (2012) Space-based observations of Eastern Hindu Kush glaciers between 1976 and 2007, Afghanistan and Pakistan. Remote Sens Lett 3:77–84. doi:10.1080/01431161.2010.536181

    Article  Google Scholar 

  • Scherler D, Bookhagen B, Strecker MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat Geosci 4:156–159. doi:10.1038/ngeo1068

    Article  Google Scholar 

  • Schmidt S, Nüsser M (2009) Fluctuations of Raikot Glacier during the past 70 years: a case study from the Nanga Parbat massif, northern Pakistan. J Glaciol 55:949–959. doi:10.3189/002214309790794878

    Article  Google Scholar 

  • Schmidt S, Nüsser M (2012) Changes of High Altitude Glaciers from 1969 to 2010 in the Trans-Himalayan Kang Yatze Massif, Ladakh, Northwest India. Arctic Antarct Alp Res 44:107–121. doi:10.1657/1938-4246-44.1.107

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  • Shekhar MS, Chand H, Kumar S et al (2010) Climate-change studies in the western Himalaya. Ann Glaciol 51:105–112. doi:10.3189/172756410791386508

    Article  Google Scholar 

  • Shukla S, Dutta S (2005) Generation of baseline data on secular movement of selected glaciers in Ravi Basin, Chamba District, Himachal Pradesh (Tal and Manimahesh Glaciers)

    Google Scholar 

  • Sneyers S (1990) On the statistical analysis of series of observations Technical note no. 143, WMO No. 725 415

    Google Scholar 

  • Spate OHK, Learmonth ATA (1967) India and Pakistan – a general and regional geography. Methuen and Co. Ltd, Delhi, India

    Google Scholar 

  • Yue S, Hashino M (2003) Long term trends of annual and monthly precipitation in Japan. J Am Water Resour Assoc 39:587–596. doi:10.1111/j.1752-1688.2003.tb03677.x

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the University Grant Commission, New Delhi, for the financial support for this work. The authors are also grateful to Jawaharlal Nehru University, New Delhi, for providing the research facilities. We also thank USGS for providing Landsat TM/ETM+/OLI and Corona data. The first author is grateful to Mr. Bruce Raup, GLIMS (http://www.glims.org/), for providing ASTER data for this research at no cost. The first author acknowledges Dr. Rakesh Bhambri for his valuable suggestions during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritam Chand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chand, P., Sharma, M.C., Prasad, R.N. (2016). Heterogeneity in Fluctuations of Glacier with Clean Ice-Covered, Debris-Covered and Proglacial Lake in the Upper Ravi Basin, Himachal Himalaya (India), During the Past Four Decades (1971–2013). In: Singh, R., Schickhoff, U., Mal, S. (eds) Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya. Springer, Cham. https://doi.org/10.1007/978-3-319-28977-9_9

Download citation

Publish with us

Policies and ethics