Advertisement

Glacier Variations in the Trans Alai Massif and the Lake Karakul Catchment (Northeastern Pamir) Measured from Space

  • Nicolai Holzer
  • Tim Golletz
  • Manfred Buchroithner
  • Tobias Bolch
Chapter

Abstract

Glacier area and length changes were measured in the central Trans Alai of the northeastern Pamir, including the entire catchment of Lake Karakul. Annual shrinkage determined from Landsat 7 ETM+ imagery accounted for −0.8 ± 0.4 % aˉ1, corresponding to −8.8 ± 4.8 % from 1455 ± 51 km2 in 2000 to 1327 ± 48 km2 in 2011. Several glaciers could be mapped back to 1973 based on a KH-9 Hexagon reconnaissance image. Measured glacier extents of 550 ± 10 km2 in 1973, 540 ± 9 km2 in 2000, and 521 ± 9 km2 in 2011 indicate accelerated shrinkage for the last decade in the Trans Alai. Glaciers retreated on average by −4.3 ± 0.5 m aˉ1 before 2000 and subsequently advanced by +6.1 ± 1.0 m aˉ1 until 2011. Geodetic mass balances of four selected glaciers were determined from a Digital Elevation Model extracted from a 2010 ALOS-PRISM tri-stereo image and the February 2000 SRTM-3 elevation dataset (1999). Its difference image reveals highly variable glacier elevation changes. While three glaciers showed probably a minor loss (−0.16 ± 0.68 m w.e. aˉ1 to −0.06 ± 0.68 m w.e. aˉ1), a more pronounced mass loss was observed for Uisuu Glacier (−0.50 ± 0.68 m w.e. aˉ1). This study reveals significant glacier variations and numerous indications of surges in the Trans Alai, a well-known phenomenon in the Pamir.

Keywords

Glacier variations Geodetic mass balance ALOS-PRISM KH-9 Hexagon Trans Alai Northeastern Pamir 

Notes

Acknowledgments

This study was supported by the German Federal Ministry of Education and Research (BMBF) program “Central Asia – Monsoon Dynamics and Geo-Ecosystems” (CAME) within the WET project (“Variability and Trends in Water Balance Components of Benchmark Drainage Basins on the Tibetan Plateau”) under code 03G0804F. T. Bolch acknowledges funding by the German Research Foundation (DFG, BO 3199/2-1) and the European Space Agency, Project Glaciers_cci (4000101778/10/I-AM). KH-9 Hexagon imagery and Landsat 7 ETM+ satellite imagery were provided by the US Geological Survey (USGS). ALOS-PRISM imagery was purchased by the GAF AG and provided by JAXA (Japan Aerospace Exploration Agency). Hole-filled SRTM-3 v4.1 data was obtained from the Consortium for Spatial Information of the Consultative Group for International Agricultural Research (CGIAR-CSI). We acknowledge the support of Tino Pieczonka in data co-registration and thank Juliane Peters, Jan Kropácek, and Benjamin Schröter for fruitful discussions.

References

  1. Aizen VB, Aizen EM (2014) The Central Asia climate and cryosphere/water resources changes. In: Materials of the international conference “Remote- and Ground-based Earth Observations in Central Asia”. 8–9 Sept 2014. BishkekGoogle Scholar
  2. Bhambri R, Bolch T, Kawishwar P, Dobhal D, Srivastava D, Pratap B (2013) Heterogeneity in glacier response in the Shyok valley, northeast Karakoram. The Cryosphere 7(5):1384–1398. doi: 10.5194/tc-7-1385-2013 CrossRefGoogle Scholar
  3. Bolch T, Buchroithner MF, Pieczonka T, Kunert A (2008) Planimetric and volumetric glacier changes in Khumbu Himalaya since 1962 using Corona, Landsat TM and ASTER data. J Glaciol 54(187):592–600. doi: 10.3189/002214308786570782 CrossRefGoogle Scholar
  4. Bolch T, Yao T, Kang S, Buchroithner MF, Scherer D, Maussion F, Huintjes E, Schneider C (2010) A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976–2009. The Cryosphere 4(3):419–433. doi: 10.5194/tc-4-419-2010 CrossRefGoogle Scholar
  5. Burnett MG (2012) Hexagon (KH-9) – mapping camera program and evolution. National Reconnaissance Office (NRO), Center for the Study of National Reconnaissance (CSNR), ChantillyGoogle Scholar
  6. Copland L, Sylvestre T, Bishop MP, Shroder JF, Seong YB, Owen LA, Bush A, Kamp U (2011) Expanded and recently increased glacier surging in the Karakoram. Arct Antarct Alp Res 43(4):503–516. doi: 10.1657/1938-4246-43.4.503 CrossRefGoogle Scholar
  7. Gardelle J, Berthier E, Arnaud Y (2012) Impact on resolution and radar penetration on glacier elevation changes computed from DEM differencing. J Glaciol 58(208):419–422. doi: 10.3189/2012JoG11J175 CrossRefGoogle Scholar
  8. Gardelle J, Berthier E, Arnaud Y, Kääb A (2013) Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. The Cryosphere 7(4):1263–1286. doi: 10.5194/tc-7-1263-2013 CrossRefGoogle Scholar
  9. Gardner AS, Moholdt G, Cogley JG, Wouters B, Arendt AA, Wahr J, Berthier E, Hock R, Pfeffer WT, Kaser G, Ligtenberg SRM, Bolch T, Sharp MJ, Hagen JO, van den Broeke MR, Paul F (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340(6134):852–857. doi: 10.1126/science.1234532 CrossRefGoogle Scholar
  10. Holzer N, Vijay S, Yao T, Xu B, Buchroithner MF, Bolch T (2015) Four decades of glacier variations at Muztagh Ata (eastern Pamir): a multi-sensor study including Hexagon KH-9 and Pléiades data. The Cryosphere 9(6):2071–2088. doi: 10.5194/tc-9-2071-2015 CrossRefGoogle Scholar
  11. Huss M (2013) Density assumptions for converting geodetic glacier volume change to mass change. The Cryosphere 7(3):877–887. doi: 10.5194/tc-7-877-2013 CrossRefGoogle Scholar
  12. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the 5th assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  13. Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole–filled seamless SRTM data v4.1, International Centre for Tropical Agriculture (CIAT), http://srtm.csi.cgiar.org
  14. Kääb A, Treichler D, Nuth C, Berthier E (2015) Brief communication: contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. The Cryosphere 9(2):557–564. doi: 10.5194/tc-9-557-2015 CrossRefGoogle Scholar
  15. Khromova T, Osipova GB, Tsvetkov D, Dyurgerov MB, Barry RG (2006) Changes in glacier extent in the eastern Pamir, Central Asia, determined from historical data and ASTER imagery. Remote Sens Environ 102(1–2):24–32. doi: 10.1016/j.rse.2006.01.019 CrossRefGoogle Scholar
  16. Komatsu T, Watanabe T, Hirakawa K (2010) A framework for late quaternary lake-level fluctuations in Lake Karakul, eastern Pamir, focusing on lake–glacier landform interaction. Geomorphology 119(3–4):198–211. doi: 10.1016/j.geomorph.2010.03.025 CrossRefGoogle Scholar
  17. Kotlyakov V, Osipova G, Tsvetkov D (2008) Monitoring surging glaciers of the Pamir, central Asia, from space. Ann Glaciol 48(1):125–134. doi: 10.3189/172756408784700608 CrossRefGoogle Scholar
  18. Lambrecht A, Mayer C, Aizen V, Floricioiu D, Surazakov A (2014) The evolution of Fedchenko glacier in the Pamir, Tajikistan, during the past eight decades. J Glaciol 60(220):233–244. doi: 10.3189/2014JoG13J110 CrossRefGoogle Scholar
  19. Maussion F, Scherer D, Mölg T, Collier E, Curio J, Finkelnburg R (2014) Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis. J Clim 27(5):1910–1927. doi: 10.1175/JCLI-D-13-00282.1 CrossRefGoogle Scholar
  20. Nuth C, Kääb A (2011) Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere 5(1):271–290. doi: 10.5194/tc-5-271-2011 CrossRefGoogle Scholar
  21. Paul F, Barrand N, Baumann S, Berthier E, Bolch T, Casey K, Frey H, Joshi S, Konovalov V, Le Bris R, Mölg N, Nosenko G, Nuth C, Pope A, Racoviteanu A, Rastner P, Raup B, Scharrer K, Steffen S, Winsvold S (2013) On the accuracy of glacier outlines derived from remote-sensing data. Ann Glaciol 54(63):171–182. doi: 10.3189/2013AoG63A296 CrossRefGoogle Scholar
  22. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11(5):1633–1644. doi: 10.5194/hess-11-1633-2007 CrossRefGoogle Scholar
  23. Pieczonka T, Bolch T, Wei J, Liu S (2013) Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery. Remote Sens Environ 130:233–244. doi: 10.1016/j.rse.2012.11.020 CrossRefGoogle Scholar
  24. Racoviteanu AE, Paul F, Raup B, Khalsa SJS, Armstrong R (2009) Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA. Ann Glaciol 50(53):53–69. doi: 10.3189/172756410790595804 CrossRefGoogle Scholar
  25. Takaku J, Futamura N, Iijima T, Tadono T, Shimada M (2007) High resolution DSM generation from ALOS PRISM. In: Geoscience and remote sensing symposium, IGARSS 2007. IEEE International, pp 1974–1977, IGARSS, Barcelona. doi: 10.1109/IGARSS.2007.4423215
  26. Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B, Pu J, Lu A, Xiang Y, Kattel DB, Joswiak D (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Chang 2(9):663–667. doi: 10.1038/nclimate1580 CrossRefGoogle Scholar
  27. Zhang Q, Kang S, Chen F (2014) Glacier variations in the Fedchenko Basin, Tajikistan, 1992–2006: insights from remote-sensing images. Mt Res Dev 34(1):56–65. doi: 10.1659/MRD-JOURNAL-D-12-00074.1 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institut für KartographieTechnische Universität DresdenDresdenGermany
  2. 2.Geographisches InstitutUniversität ZürichZürichSwitzerland

Personalised recommendations