Skip to main content

Abstract

Treelines are sensitive to changing climatic conditions, in particular to temperature increases, and the majority of global alpine treelines has shown a response to recent climate change. High temperature trends in the Himalaya suggest a treeline advance to higher elevations; it is largely unknown, however, how broader-scale climate inputs interact with local-scale factors and processes to govern treeline response patterns. This paper reviews and synthesizes the current state of knowledge regarding sensitivity and response of Himalayan treelines to climate warming, based on extensive field observations, published results in the widely scattered literature and novel data from ongoing research of the present authors.

Palaeoecological studies indicate that the position of Himalayan treeline ecotones has been sensitive to Holocene climate change. After the Pleistocene-Holocene transition, treelines advanced in elevation to a position several hundred metres higher than today under warm-humid conditions and reached uppermost limits in the early Holocene. Decreasing temperatures below early and mid-Holocene levels induced a downward shift of treelines after c. 5.0 kyr BP. The decline of subalpine forests and treeline elevation in the more recent millennia was coincident with weakening monsoonal influence and increasing anthropogenic interferences.

To assess current treeline dynamics, treeline type, treeline form, seed-based regeneration and growth patterns are evaluated as sensitivity indicators. Anthropogenic treelines are predominant in the Himalaya; upslope movement of these treelines is related to the effects of land-use change. Near-natural treelines, rare nowadays, are usually developed as krummholz treelines which are relatively unresponsive. Strong competition within the krummholz belt and dense dwarf scrub heaths further upslope largely prevents the upward migration of tree species and retards treeline advance to higher elevation. However, intense recruitment of treeline trees within the treeline ecotone and beyond indicates beneficial preconditions for future treeline ascent. Growth patterns of treeline trees are particularly sensitive to higher winter and pre-monsoon temperatures, suggesting that moisture supply in the pre-monsoon season might be an effective control of future treeline dynamics. Modelled upslope range expansions of treeline trees point to potentially favourable bioclimatic conditions for an upward shift of treelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal DP, Kotlia BS, Kusumgar S, Gupta SK (1989) Quaternary palaeoenvironmental changes in Northwest India. In: Sahni A, Gaur R (eds) Perspectives in human evolution. Renaissance, Delhi, pp 223–260

    Google Scholar 

  • Alley RB, Mayewski PA, Sowers T, Stuiver M, Taylor KC, Clark PU (1997) Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25:483–486

    Article  Google Scholar 

  • Anoop A, Prasad S, Krishnan R, Naumann R, Dulski P (2013) Intensified monsoon and spatiotemporal changes in precipitation patterns in the NW Himalaya during the early-mid Holocene. Quat Int 313:74–84

    Article  Google Scholar 

  • Anup KC, Ghimire A (2015) High-altitude plants in era of climate change: a case of Nepal Himalayas. In: Öztürk M, Hakeem KR, Faridah-Hanum F, Efe R (eds) Climate change impacts on high-altitude ecosystems. Springer, Cham, pp 177–187

    Google Scholar 

  • Aryal A, Brunton D, Raubenheimer D (2014) Impact of climate change on human-wildlife-ecosystem interactions in the Trans-Himalaya region of Nepal. Theor Appl Climatol 115:517–529

    Article  Google Scholar 

  • Baker BB, Moseley RK (2007) Advancing treeline and retreating glaciers: implications for conservation in Yunnan, P.R. China. Arct Antarct Alp Res 39:200–209

    Article  Google Scholar 

  • Batllori E, Gutiérrez E (2008) Regional tree line dynamics in response to global change in the Pyrenees. J Ecol 96:1275–1288

    Article  Google Scholar 

  • Bera SK, Basumatary SK (2013) Vegetation history and monsoonal fluctuations during the last 12,500 years BP inferred from pollen record at Lower Subansiri Basin, Assam, Northeast India. Palaeobotanist 62:1–10

    Google Scholar 

  • Beug HJ, Miehe G (1999) Vegetation history and human impact in the Eastern Central Himalaya (Langtang and Helambu, Nepal). Diss Bot 318, Cramer, Berlin

    Google Scholar 

  • Bharti RR, Rai ID, Adhikari BS, Rawat GS (2011) Timberline change detection using topographic map and satellite imagery: a critique. Trop Ecol 52:133–137

    Google Scholar 

  • Bharti RR, Adhikari BS, Rawat GS (2012) Assessing vegetation changes in timberline ecotone of Nanda Devi National Park, Uttarakhand. Int J Appl Earth Obs Geoinform 18:472–479

    Article  Google Scholar 

  • Bhattacharyya A (1988) Vegetation and climate during post glacial period in the vicinity of Rohtang Pass, Great Himalayan range. Pollen et Spores 30:417–427

    Google Scholar 

  • Bhattacharyya A (1989) Vegetation and climate during the last 30,000 years in Ladakh. Palaeogeogr Palaeoclimatol Palaeoecol 73:25–38

    Article  Google Scholar 

  • Bhattacharyya A, Chaudhary V (2003) Late-summer temperature reconstruction of the eastern Himalayan region based on tree-ring data of Abies densa. Arct Antarct Alp Res 35:196–202

    Article  Google Scholar 

  • Bhattacharyya A, Shah SK (2009) Tree-ring studies in India, past appraisal, present status and future prospect. IAWA J 30:361–370

    Article  Google Scholar 

  • Bhattacharyya A, Yadav RR (1990) Growth and climate relationship in Cedrus deodara from Joshimath, Uttar Pradesh. Palaeobotanist 38:411–414

    Google Scholar 

  • Bhattacharyya A, Shah SK, Chaudhary V (2006) Would tree-ring data of Betula utilis have potential for the analysis of Himalayan glacial fluctuations? Curr Sci 91:754–761

    Google Scholar 

  • Bhattacharyya A, Sharma J, Shah SK, Chaudhury V (2007) Climatic changes during last 1800 yrs BP from Paradise Lake, Sela Pass, Arunachal Pradesh, Northeast Himalaya. Curr Sci 93:983–987

    Google Scholar 

  • Bhattacharyya A, Ranhotra P, Shah SK (2011) Spatio-temporal variation of alpine vegetation vis-à-vis climate during Holocene in the Himalaya. Mem Geol Soc India 77:309–319

    Article  Google Scholar 

  • Böhner J (2006) General climatic controls and topoclimatic variations in Central and High Asia. Boreas 35:279–295

    Article  Google Scholar 

  • Borgaonkar HP, Pant GB, Rupa Kumar K (1999) Tree-ring chronologies from western Himalaya and their dendroclimatic potential. Int Assoc Wood Anat J 20:295–309

    Google Scholar 

  • Borgaonkar HP, Ram S, Sikder AB (2009) Assessment of tree-ring analysis of high-elevation Cedrus deodara D. Don from western Himalaya (India) in relation to climate and glacier fluctuations. Dendrochronologia 27:59–69

    Article  Google Scholar 

  • Borgaonkar HP, Sikder AB, Ram S (2011) High altitude forest sensitivity to the recent warming: a tree-ring analysis of conifers from western Himalaya, India. Quat Int 236:158–166

    Article  Google Scholar 

  • Bräuning A (2004) Tree-ring studies in the Dolpo-Himalaya (western Nepal). TRACE – Tree Rings Archaeol Climatol Ecol 2:8–12

    Google Scholar 

  • Bräuning A (2006) Tree-ring evidence of “Little Ice Age” glacier advances in southern Tibet. The Holocene 16:1–12

    Article  Google Scholar 

  • Bräuning A, Grießinger J (2006) Late Holocene variations in monsoon intensity in the Tibetan-Himalayan region – evidence from tree rings. J Geol Soc India 68:485–493

    Google Scholar 

  • Bräuning A, Mantwill B (2004) Summer temperature and summer monsoon history on the Tibetan plateau during the last 400 years recorded by tree rings. Geophys Res Lett 31:L24205. doi:10.1029/2004GL020793

    Article  Google Scholar 

  • Bräuning A, Grießinger J, Hochreuther P, Wernicke J (2016) Dendroecological perspectives on climate change on the southern Tibetan plateau. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, glacier response, and vegetation dynamics in the Himalaya. Springer, Cham, Switzerland

    Google Scholar 

  • Brown ET, Bendick R, Bourles DL, Gaur V, Molnar P, Raisbeck GM, Yiou F (2003) Early Holocene climate recorded in geomorphological features in Western Tibet. Palaeogeogr Palaeoclimatol Palaeoecol 199:141–151

    Article  Google Scholar 

  • Cai Y, Zhang H, Cheng H, An Z, Edwards RL, Wang X, Tan L, Liang F, Wang J, Kelly M (2012) The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections. Earth Planet Sci Lett 335:135–144

    Article  Google Scholar 

  • Camarero JJ, Gutiérrez E (2004) Pace and pattern of recent treeline dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. Clim Change 63:181–200

    Article  Google Scholar 

  • Case BS, Duncan RP (2014) A novel framework for disentangling the scale-dependent influences of abiotic factors on alpine treeline position. Ecography 37:838–851

    Article  Google Scholar 

  • Chakraborty S, Bhattacharya SK, Ranhotra PS, Bhattacharyya A, Bhushan R (2006) Palaeoclimatic scenario during Holocene around Sangla valley, Kinnaur northwest Himalaya based on multi proxy records. Curr Sci 91:777–782

    Google Scholar 

  • Champion HG, Seth SK (1968) A revised survey of the forest types of India. Govt. of India, Delhi

    Google Scholar 

  • Chaudhary V, Bhattacharyya A (2000) Tree ring analysis of Larix griffithiana from the Eastern Himalayas in the reconstruction of past temperature. Curr Sci 79:1712–1715

    Google Scholar 

  • Chauhan MS (2006) Late Holocene vegetation and climate change in the alpine belt of Himachal Pradesh. Curr Sci 91:1562–1567

    Google Scholar 

  • Chauhan MS, Sharma C (1996) Late-Holocene vegetation of Darjeeling (Jore-Pokhari), Eastern Himalaya. Palaeobotanist 45:125–129

    Google Scholar 

  • Chauhan MS, Sharma C (2000) Late Holocene vegetation and climate in Dewar Tal area, Inner Lesser Garhwal Himalaya. Palaeobotanist 49:509–514

    Google Scholar 

  • Chauhan MS, Mazari RK, Rajagopalan G (2000) Vegetation and climate in upper Spiti region, Himachal Pradesh during late Holocene. Curr Sci 79:373–376

    Google Scholar 

  • Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  Google Scholar 

  • Chhetri PK, Cairns DM (2015) Contemporary and historic population structure of Abies spectabilis at treeline in Barun valley, eastern Nepal Himalaya. J Mt Sci 12:558–570

    Article  Google Scholar 

  • Chou SC, Huang CH, Hsu TW, Wu CC, Chou CH (2010) Allelopathic potential of Rhododendron formosanum Hemsl in Taiwan. Allelopathy J 25:73–92

    Google Scholar 

  • Clift PD, Plumb RA (2008) The asian monsoon: causes, history and effects. Cambridge Univ Press, Cambridge

    Book  Google Scholar 

  • Cook BI, Wolkovich EM, Davies TJ, Ault TR, Betancourt JL, Allen JM, Bolmgren K, Cleland EE, Crimmins TM, Kraft NJB, Lancaster LT, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Pau S, Regetz J, Salamin N, Schwartz MD, Travers SE (2012) Sensitivity of spring phenology to warming across temporal and spatial climate gradients in two independent databases. Ecosystems 15:1283–1294

    Article  Google Scholar 

  • Danby RK, Hik DS (2007) Variability, contingency and rapid change in recent subarctic alpine treeline dynamics. J Ecol 95:352–363

    Article  Google Scholar 

  • Daniels LD, Veblen TT (2004) Spatiotemporal influences of climate on altitudinal treeline in northern Patagonia. Ecology 85:1284–1296

    Article  Google Scholar 

  • Däniker A (1923) Biologische Studien über Wald- und Baumgrenzen, insbesondere über die klimatischen Ursachen und deren Zusammenhänge. Vierteljahresschr Naturforsch Ges Zürich 68:1–102

    Google Scholar 

  • Dawadi B, Liang E, Tian L, Devkota LP, Yao T (2013) Pre-monsoon precipitation signal in tree rings of timberline Betula utilis in the central Himalayas. Quat Int 283:72–77

    Article  Google Scholar 

  • Demske D, Tarasov PE, Wünnemann B, Riedel F (2009) Late glacial and Holocene vegetation, Indian monsoon and westerly circulation in the Trans-Himalaya recorded in the lacustrine pollen sequence from Tso Kar, Ladakh, NW India. Palaeogeogr Palaeoclimatol Palaeoecol 279:172–185

    Article  Google Scholar 

  • Dixit Y, Hodell DA, Sinha R, Petrie CA (2014) Abrupt weakening of the Indian summer monsoon at 8.2 kyr BP. Earth Planet Sci Lett 391:16–23

    Article  Google Scholar 

  • Dodia R, Agrawal DP, Vora AB (1985) New pollen data from Kashmir bogs: a summary. In: Agrawal DP, Kusumgar S, Krishnamurthy RV (eds) Climate and geology of Kashmir and Central Asia. TT Printers & Publ, New Delhi, pp 101–108

    Google Scholar 

  • Dubey B, Yadav RR, Singh J, Chaturvedi R (2003) Upward shift of Himalayan pine in western Himalaya, India. Curr Sci 85:1135–1136

    Google Scholar 

  • Dullinger S, Dirnböck T, Grabherr G (2004) Modelling climate-change driven treeline shifts: relative effects of temperature increase, dispersal and invisibility. J Ecol 92:241–252

    Article  Google Scholar 

  • Dutta PK, Dutta BK, Das AK, Sundriyal RC (2014) Alpine timberline research gap in Himalaya: a literature review. Indian For 140:419–427

    Google Scholar 

  • Elliott GP (2011) Influences of 20th century warming at the upper tree line contingent on local-scale interactions: evidence from a latitudinal gradient in the Rocky Mountains, USA. Glob Ecol Biogeogr 20:46–57

    Article  Google Scholar 

  • Esper J, Schweingruber FH, Winiger M (2002) 1,300 years of climate history for western central Asia inferred from tree-rings. The Holocene 12:267–277

    Article  Google Scholar 

  • Esper J, Frank DC, Wilson RJ, Büntgen U, Treydte K (2007) Uniform growth trends among central Asian low-and high-elevation juniper tree sites. Trees 21:141–150

    Article  Google Scholar 

  • Fan ZX, Bräuning A, Yang B, Cao KF (2009) Tree ring density-based summer temperature reconstruction for the central Hengduan Mountains in southern China. Global Planet Change 65:1–11

    Article  Google Scholar 

  • Frenzel B (1994) Über Probleme der holozänen Vegetationsgeschichte Osttibets. Göttinger Geogr Abh 95:143–166

    Google Scholar 

  • Gaire NP, Dhakal YR, Lekhak HC, Bhuju DR, Shah SK (2011) Dynamics of Abies spectabilis in relation to climate change at the treeline ecotone in Langtang National Park. Nepal J Sci Technol 12:220–229

    Google Scholar 

  • Gaire NP, Koirala M, Bhuju DR, Borgaonkar HP (2014) Treeline dynamics with climate change at the central Nepal Himalaya. Clim Past 10:1277–1290

    Article  Google Scholar 

  • Gairola S, Rawal RS, Todaria NP (2008) Forest vegetation patterns along an altitudinal gradient in sub-alpine zone of west Himalaya, India. Afr J Plant Sci 2:42–48

    Google Scholar 

  • Gairola S, Rawal RS, Todaria NP, Bhatt A (2014) Population structure and regeneration patterns of tree species in climate-sensitive subalpine forests of Indian western Himalaya. J For Res 25:343–349

    Article  Google Scholar 

  • Gasse F, Fontes JC, Van Campo E, Wei K (1996) Holocene environmental changes in Bangong Co basin (Western Tibet). Part 4: discussion and conclusions. Palaeogeogr Palaeoclimatol Palaeoecol 120:79–92

    Article  Google Scholar 

  • Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18:571–582

    Article  Google Scholar 

  • Gerlitz L, Conrad O, Thomas A, Böhner J (2014) Warming patterns over the Tibetan Plateau and adjacent lowlands derived from elevation- and bias-corrected ERA-Interim data. Clim Res 58:235–246

    Article  Google Scholar 

  • Ghimire BK, Lekhak HD (2007) Regeneration of Abies spectabilis (D. Don) Mirb. in subalpine forest of upper Manang, north-central Nepal. In: Chaudhary RP, Aase TH, Vetaas O, Subedi BP (eds) Local effects of global changes in the Himalayas: Manang Nepal. Kathmandu, Bergen, pp 139–149

    Google Scholar 

  • Ghimire BK, Mainali KP, Lekhak HD, Chaudhary RP, Ghimeray A (2010) Regeneration of Pinus wallichiana A.B. Jackson in a trans-Himalayan dry valley of north-central Nepal. Himal J Sci 6:19–26

    Google Scholar 

  • Ghosh R, Paruya DK, Khan MA, Chakraborty S, Sarkar A, Bera S (2014) Late quaternary climate variability and vegetation response in Ziro Lake Basin, Eastern Himalaya: a multiproxy approach. Quat Int 325:13–29

    Article  Google Scholar 

  • Ghosh R, Bera S, Sarkar A, Paruya DK, Yao YF, Li CS (2015) A ~50 ka record of monsoonal variability in the Darjeeling foothill region, eastern Himalayas. Quat Sci Rev 114:100–115

    Article  Google Scholar 

  • Gonzalez P, Neilson RP, Lenihan JM, Drapek RJ (2010) Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob Ecol Biogeogr 19:755–768

    Article  Google Scholar 

  • Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barančok P, Benito Alonso JL, Coldea G, Dick J, Erschbamer B, Kazakis G, Krajči J, Larsson P, Mallaun M, Michelsen O, Moiseev D, Moiseev P, Molau U, Merzouki A, Nagy L, Nakhutsrishvili G, Pedersen B, Pelino G, Puscas M, Rossi G, Stanisci A, Theurillat JP, Tomaselli M, Villar L, Vittoz P, Vogiatzakis I, Grabherr G (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim Chang 2:111–115

    Article  Google Scholar 

  • Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot 90:537–544

    Article  Google Scholar 

  • Gratzer G, Rai PB (2004) Density dependent mortality versus spatial segregation in early life stages of Abies densa and Rhododendron hodgsonii in central Bhutan. For Ecol Manag 192:143–159

    Article  Google Scholar 

  • Gratzer G, Rai PB, Schieler K (2002) Structure and regeneration dynamics of Abies densa forests in central Bhutan. Centralbl Ges Forstwes 119:279–287

    Google Scholar 

  • Graumlich LJ, Waggoner LA, Bunn AG (2005) Detecting global change at alpine treeline: coupling palaeoecology with contemporary studies. In: Huber UM, Bugmann HKM, Reasoner MA (eds) Global change and mountain regions. An overview of current knowledge. Springer, Dordrecht, pp 501–508

    Chapter  Google Scholar 

  • Grover VI, Borsdorf A, Breuste JH, Tiwari PC, Frangetto FW (2015) Impact of global changes on mountains. Responses and adaptations. CRC Press, Boca Raton

    Google Scholar 

  • Gupta RK (1983) The living Himalayas, vol 1, Aspects of Environment and Resource Ecology of Garhwal. Today and Tomorrow’s, New Delhi

    Google Scholar 

  • Gupta C, Nautiyal DD (1998) Studies on Mansar Lake deposit, Jammu. Pollen analysis and palaeoclimatic changes. Geophytology 27:67–75

    Google Scholar 

  • Gupta AK, Anderson DM, Pandey DN, Singhvi AK (2006) Adaptation and human migration, and evidence of agriculture coincident with changes in the Indian summer monsoon during the Holocene. Curr Sci 90:1082–1090

    Google Scholar 

  • Harsch MA, Bader MY (2011) Treeline form – a potential key to understanding treeline dynamics. Glob Ecol Biogeogr 20:582–596

    Article  Google Scholar 

  • Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12:1040–1049

    Article  Google Scholar 

  • Hasson S, Gerlitz L, Schickhoff U, Scholten T, Böhner J (2016) Recent climate change in High Asia. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, glacier response, and vegetation dynamics in the Himalaya. Springer, Cham, Switzerland

    Google Scholar 

  • He M, Yang B, Bräuning A (2013) Tree growth–climate relationships of Juniperus tibetica along an altitudinal gradient on the southern Tibetan Plateau. Trees 27:429–439

    Article  Google Scholar 

  • Herzschuh U (2006) Palaeo-moisture evolution at the margins of the Asian monsoon during the last 50 ka. Quat Sci Rev 25:163–178

    Article  Google Scholar 

  • Holtmeier FK (2009) Mountain timberlines. Ecology, patchiness, and dynamics. Springer, Dordrecht

    Book  Google Scholar 

  • Holtmeier FK, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14:395–410

    Article  Google Scholar 

  • Holtmeier FK, Broll G (2007) Treeline advance – driving processes and adverse factors. Landsc Online 1:1–21

    Article  Google Scholar 

  • Holtmeier FK, Broll G (2009) Altitudinal and polar treelines in the northern hemisphere – causes and response to climate change. Polarforschung 79:139–153

    Google Scholar 

  • Holtmeier FK, Broll G (2012) Landform influences on treeline patchiness and dynamics in a changing climate. Phys Geogr 33:403-437

    Google Scholar 

  • Huber UM, Bugmann HKM, Reasoner MA (eds) (2005) Global change and mountain regions. An overview of current knowledge. Springer, Dordrecht

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of the working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part a: global and sectoral aspects. Contribution of the working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jacobsen JP, Schickhoff U (1995) Untersuchungen zur Besiedlung und gegenwärtigen Waldnutzung im Hindukusch/Karakorum. Erdkunde 49:49–59

    Google Scholar 

  • Jarvis DI (1993) Pollen evidence of changing Holocene monsoon climate in Sichuan Province, China. Quat Res 39:325–337

    Article  Google Scholar 

  • Kaiser K, Opgenoorth L, Schoch WH, Miehe G (2009) Charcoal and fossil wood from palaeosols, sediments and artificial structures indicating Late Holocene woodland decline in southern Tibet (China). Quat Sci Rev 28:1539–1554

    Article  Google Scholar 

  • Kar R, Ranhotra PS, Bhattacharyya A, Sekar B (2002) Vegetation vis-à-vis climate and glacial fluctuations of the Gangotri Glacier since the last 2000 years. Curr Sci 82:347–351

    Google Scholar 

  • Kharal DK, Bhuju DR, Gaire NP, Rayamajhi S, Meilby H, Chaudhary A (2015) Population structure and distribution of Abies spectabilis (D. Don) in Central Nepal Himalaya: a comparison with the total woody vegetation of the forests at the three different elevation ranges in Manang District. Banko Janakari 25:3–14

    Article  Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459

    Article  Google Scholar 

  • Körner C (2007) Climatic treelines: conventions, global patterns, causes. Erdkunde 61:316–324

    Article  Google Scholar 

  • Körner C (2012) Alpine treelines. Functional ecology of the high elevation tree limits. Springer, Basel

    Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732

    Article  Google Scholar 

  • Körner C, Ohsawa M, Spehn E, Berge E, Bugmann H, Groombridge B, Hamilton L, Hofer T, Ives J, Jodha N, Messerli B, Pratt J, Price M, Reasoner M, Rodgers A, Thonell J, Yoshino M (2005) Mountain systems. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and human well-being: current state and trends, vol 1. Island Press, Washington, pp 681–716

    Google Scholar 

  • Kotlia BS, Joshi LM (2013) Late Holocene climatic changes in Garhwal Himalaya. Curr Sci 104:911–919

    Google Scholar 

  • Kramer A, Herzschuh U, Mischke S, Zhang C (2010a) Holocene treeline shifts and monsoon variability in the Hengduan Mountains (southeastern Tibetan Plateau), implications from palynological investigations. Palaeogeogr Palaeoclimatol Palaeoecol 286:23–41

    Article  Google Scholar 

  • Kramer A, Herzschuh U, Mischke S, Zhang C (2010b) Late glacial vegetation and climate oscillations on the southeastern Tibetan Plateau inferred from the Lake Naleng pollen profile. Quat Res 73:324–335

    Article  Google Scholar 

  • Kullman L (2000) Tree-limit rise and recent warming: a geoecological case study from the Swedish Scandes. Nors Geogr Tidsskr 54:49–59

    Article  Google Scholar 

  • Kullman L (2014) Treeline (Pinus sylvestris) landscape evolution in the Swedish Scandes – a 40-year demographic effort viewed in a broader temporal context. Nors Geogr Tidsskr 68:155–167

    Article  Google Scholar 

  • Kullman L, Öberg L (2009) Post-Little Ice Age tree line rise and climate warming in the Swedish Scandes: a landscape ecological perspective. J Ecol 97:415–429

    Article  Google Scholar 

  • Kumar P (2012) Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: limitations and challenges. Biodivers Conserv 21:1251–1266

    Article  Google Scholar 

  • Lang G (1994) Quartäre Vegetationsgeschichte Europas. Fischer, Jena

    Google Scholar 

  • Leipe C, Demske D, Tarasov PE, Members HP (2014) A Holocene pollen record from the northwestern Himalayan lake Tso Moriri: implications for palaeoclimatic and archaeological research. Quat Int 348:93–112

    Article  Google Scholar 

  • Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771

    Article  Google Scholar 

  • Lescop-Sinclair K, Payette S (1995) Recent advance of the arctic treeline along the eastern coast of Hudson Bay. J Ecol 83:929–936

    Article  Google Scholar 

  • Liang E, Shao XM, Xu Y (2009) Tree-ring evidence of recent abnormal warming on the southeast Tibetan Plateau. Theor Appl Climatol 98:9–18

    Article  Google Scholar 

  • Liang E, Wang Y, Xu Y, Liu B, Shao X (2010) Growth variations of Abies georgei var. smithii along altitudinal gradients in the Sygera Mts., southeastern Tibetan Plateau. Trees 24:363–373

    Article  Google Scholar 

  • Liang E, Wang Y, Eckstein D, Luo T (2011) Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming. New Phytol 190:760–769

    Article  Google Scholar 

  • Liang E, Dawadi B, Pederson N, Eckstein D (2014) Is the growth of birch at the upper timberline in the Himalayas limited by moisture or by temperature? Ecology 95:2453–2465

    Article  Google Scholar 

  • Liu J, Qin C, Kang S (2013) Growth response of Sabina tibetica to climate factors along an elevation gradient in South Tibet. Dendrochronologia 31:255–265

    Article  Google Scholar 

  • Lloyd AH (2005) Ecological histories from Alaskan tree lines provide insight into future change. Ecology 86:1687–1695

    Article  Google Scholar 

  • Lv LX, Zhang QB (2012) Asynchronous recruitment history of Abies spectabilis along an altitudinal gradient in the Mt. Everest region. J Plant Ecol 5:147–156

    Article  Google Scholar 

  • MacDonald GM, Velichko AA, Gattaulin VN (2000) Holocene treeline history and climate change across northern Eurasia. Quat Res 53:302–311

    Article  Google Scholar 

  • Malanson GP, Butler DR, Fagre DB, Walsh SJ, Tomback DF, Daniels LD, Resler LM, Smith WK, Weiss DJ, Peterson DL, Bunn AG, Hiemstra CA, Liptzin D, Bourgeron PS, Shen Z, Millar CI (2007) Alpine treeline of western North America: linking organism-to-landscape dynamics. Phys Geogr 28:378–396

    Article  Google Scholar 

  • Malanson GP, Resler LM, Bader MY, Holtmeier FK, Butler DR, Weiss DJ, Daniels LD, Fagre DB (2011) Mountain treelines: a roadmap for research orientation. Arct Antarct Alp Res 43:167–177

    Article  Google Scholar 

  • Mathisen IE, Mikheeva A, Tutubalina OV, Aune S, Hofgaard A (2014) Fifty years of tree line change in the Khibiny Mountains, Russia: advantages of combined remote sensing and dendroecological approaches. Appl Veg Sci 17:6–16

    Article  Google Scholar 

  • Mehrotra N, Shah SK, Bhattacharyya A (2014) Review of palaeoclimate records from Northeast India based on pollen proxy data of Late Pleistocene–Holocene. Quat Int 325:41–54

    Article  Google Scholar 

  • Miehe G (1997) Alpine vegetation types of the central Himalaya. In: Wielgolaski FE (ed) Polar and Alpine Tundra. Ecosystems of the World 3. Elsevier, Amsterdam, pp 161–184

    Google Scholar 

  • Miehe G (2004) Himalaya. In: Burga CA, Klötzli F, Grabherr G (eds) Gebirge der Erde. Landschaft, Klima, Pflanzenwelt. Ulmer, Stuttgart, pp 325–359

    Google Scholar 

  • Miehe G, Miehe S (2000) Comparative high mountain research on the treeline ecotone under human impact. Erdkunde 54:34–50

    Article  Google Scholar 

  • Miehe G, Miehe S, Schlütz F (2002) Vegetationskundliche und palynologische Befunde aus dem Muktinath-Tal (Tibetischer Himalaya, Nepal): Ein Beitrag zur Landschaftsgeschichte altweltlicher Hochgebirgshalbwüsten. Erdkunde 56:268–285

    Article  Google Scholar 

  • Miehe G, Kaiser K, Co S, Xinquan Z, Jianquan L (2008) Geo-ecological transect studies in northeast Tibet (Qinghai, China) reveal human-made mid-Holocene environmental changes in the upper Yellow River catchment changing forest to grassland. Erdkunde 62:187–199

    Article  Google Scholar 

  • Miehe G, Miehe S, Schlütz F (2009a) Early human impact in the forest ecotone of southern High Asia (Hindu Kush, Himalaya). Quat Res 71:255–265

    Article  Google Scholar 

  • Miehe G, Miehe S, Kaiser K, Reudenbach C, Behrendes L, Duo L, Schlütz F (2009b) How old is pastoralism in Tibet? An ecological approach to the making of a Tibetan landscape. Palaeogeogr Palaeoclimatol Palaeoecol 276:130–147

    Article  Google Scholar 

  • Miehe G, Miehe S, Böhner J, Bäumler R, Ghimire SK, Bhattarai K, Chaudhary RP, Subedi M, Jha PK, Pendry C (2015) Vegetation ecology. In: Miehe G, Pendry C, Chaudhary RP (eds) Nepal: An introduction to the natural history, ecology and human environment of the Himalayas. Royal Botanic Garden Edinburgh, pp 385-472

    Google Scholar 

  • Moiseev PA, Bartysh AA, Nagimov ZY (2010) Climate changes and tree stand dynamics at the upper limit of their growth in the North Ural Mountains. Russ J Ecol 41:486–497

    Article  Google Scholar 

  • Morrill C, Overpeck JT, Cole JE (2003) A synthesis of abrupt changes in the Asian summer monsoon since the last deglaciation. The Holocene 13:465–476

    Article  Google Scholar 

  • Müller M, Schickhoff U, Scholten T, Drollinger S, Böhner J, Chaudhary RP (2016) How do soil properties affect alpine treelines? General principles in a global perspective and novel findings from Rolwaling Himal, Nepal. Prog Phys Geogr 40:135–160

    Google Scholar 

  • Negi PS (2012) Climate change, alpine treeline dynamics and associated terminology: focus on northwestern Indian Himalaya. Trop Ecol 53:371–374

    Google Scholar 

  • Overpeck J, Anderson D, Trumbore S, Prell W (1996) The southwest Indian Monsoon over the last 18 000 years. Clim Dyn 12:213–225

    Article  Google Scholar 

  • Panigrahy S, Anitha D, Kimothi MM, Singh SP (2010) Timberline change detection using topographic map and satellite imagery. Trop Ecol 51:87–91

    Google Scholar 

  • Pant GB, Rupa Kumar K, Yamashita K (2000) Climatic response of Cedrus deodara tree-ring parameters from two sites in the western Himalaya. Can J For Res 30:1127–1135

    Article  Google Scholar 

  • Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB, Coldea G, Dick J, Erschbamer B, Calzado RF, Ghosn D, Holten JI, Kanka R, Kazakis G, Kollar J, Larsson P, Moiseev P, Moiseev D, Molau U, Mesa JM, Nagy L, Pelino G, Puscas M, Rossi G, Stanisci A, Syverhuset AO, Theurillat JP, Tomaselli M, Unterluggauer P, Villar L, Vittoz P, Grabherr G (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336:353–355

    Article  Google Scholar 

  • Paulsen J, Körner C (2014) A climate-based model to predict potential treeline position around the globe. Alp Bot 124:1–12

    Article  Google Scholar 

  • Peñuelas J, Sardans J, Estiarte M, Ogaya R, Carnicer J, Coll M, Barbeta A, Rivas-Ubach A, Llusia J, Garbulsky M, Filella I, Jump AS (2013) Evidence of current impact of climate change on life: a walk from genes to the biosphere. Glob Chang Biol 19:2303–2338

    Article  Google Scholar 

  • Phadtare NR (2000) Sharp decrease in summer monsoon strength 4000–3500 cal yr B.P. in the central higher Himalaya of India based on pollen evidence from alpine peat. Quat Res 53:122–129

    Article  Google Scholar 

  • Phadtare NR, Pant RK (2006) A century-scale pollen record of vegetation and climate history during the past 3500 years in the Pinder Valley, Kumaon Higher Himalaya, India. Geol Soc India 68:495–506

    Google Scholar 

  • Prasad S, Enzel Y (2006) Holocene palaeoclimates of India. Quat Res 66:442–453

    Article  Google Scholar 

  • Puri GS, Gupta RK, Meher-Homji VM, Puri S (1989) Forest ecology, vol 2, Plant Form, Diversity, Communities and Succession. Oxford & IBH, New Delhi

    Google Scholar 

  • Rai ID, Bharti R, Adhikari BS, Rawat GS (2013) Structure and functioning of timberline vegetation in the western Himalaya: a case study. In: Wu N, Rawat GS, Joshi S, Ismail M, Sharma E (eds) High-altitude rangelands and their interfaces in the Hindu Kush Himalayas. ICIMOD, Kathmandu, pp 91–107

    Google Scholar 

  • Ram S, Borgaonkar HP (2013) Growth response of conifer trees from high altitude region of western Himalaya. Curr Sci 105:225–231

    Google Scholar 

  • Ram S, Borgaonkar HP (2014) Tree-ring analysis over western Himalaya and its long-term association with vapor pressure and potential evapotranspiration. Dendrochronologia 32:32–38

    Article  Google Scholar 

  • Ranhotra PS, Bhattacharyya A, Kar R, Sekar B (2001) Vegetation and climatic changes around Gangotri glacier during Holocene. Geol Surv India Spec Publ 65:67–71

    Google Scholar 

  • Rawat DS (2012) Monitoring ecosystem boundaries in the Himalaya through an ‘eye in the sky’. Curr Sci 102:1352–1354

    Google Scholar 

  • Rawat S, Gupta AK, Sangode SJ, Srivastava P, Nainwal HC (2015) Late Pleistocene–Holocene vegetation and Indian summer monsoon record from the Lahaul, Northwest Himalaya, India. Quat Sci Rev 114:167–181

    Article  Google Scholar 

  • Reasoner MA, Tinner W (2009) Holocene treeline fluctuations. In: Gornitz V (ed) Encyclopedia of palaeoclimatology and ancient environments. Springer, Dordrecht, pp 442–446

    Chapter  Google Scholar 

  • Ren QS, Yang XL, Cui GF, Wang JS, Huang Y, Wei XH, Li QL (2007) Smith fir population structure and dynamics in the timberline ecotone of the Sejila Mountain, Tibet, China. Acta Ecol Sin 27:2669–2677

    Article  Google Scholar 

  • Richardson AD, Friedland AJ (2009) A review of the theories to explain arctic and alpine treelines around the world. J Sustain For 28:218–242

    Article  Google Scholar 

  • Saijo K, Tanaka S (2002) Palaeosols of Middle Holocene age in the Thakkola Basin, Central Nepal, and their paleoclimatic significance. J Asian Earth Sci 21:323–329

    Article  Google Scholar 

  • Sano M, Furuta F, Kobayashi O, Sweda T (2005) Temperature variations since the mid-18th century for western Nepal, as reconstructed from tree-ring width and density of Abies spectabilis. Dendrochronologia 23:83–92

    Article  Google Scholar 

  • Schickhoff U (1995) Himalayan forest-cover changes in historical perspective. A case study in the Kaghan Valley, northern Pakistan. Mt Res Dev 15:3–18

    Article  Google Scholar 

  • Schickhoff U (2000a) The impact of Asian summer monsoon on forest distribution patterns, ecology, and regeneration north of the main Himalayan range (E-Hindukush, Karakorum). Phytocoenologia 30:633–654

    Article  Google Scholar 

  • Schickhoff U (2000b) Persistence and dynamics of long-lived forest stands in the Karakorum under the influence of climate and man. In: Miehe G, Zhang Y (eds) Environmental changes in High Asia. Proceedings of an international symposium at the University of Marburg. Marburger Geogr Schr 135. pp 250–264

    Google Scholar 

  • Schickhoff U (2002) Die Degradierung der Gebirgswälder Nordpakistans. Faktoren, Prozesse und Wirkungszusammenhänge in einem regionalen Mensch-Umwelt-System. Erdwiss Forsch 41, Steiner, Stuttgart

    Google Scholar 

  • Schickhoff U (2005) The upper timberline in the Himalayas, Hindu Kush and Karakorum: a review of geographical and ecological aspects. In: Broll G, Keplin B (eds) Mountain ecosystems. Studies in treeline ecology. Springer, Berlin, pp 275–354

    Chapter  Google Scholar 

  • Schickhoff U (2011) Dynamics of mountain ecosystems. In: Millington A, Blumler M, Schickhoff U (eds) Handbook of biogeography. Sage Publ, London, pp 313–337

    Google Scholar 

  • Schickhoff U (2012) Der Himalaya: Wandel eines Gebirgssystems unter dem Einfluss von Klima und Mensch. In: Rintelner Symposium X. Berichte der Reinhold-Tüxen-Gesellschaft 24. pp 103–121

    Google Scholar 

  • Schickhoff U, Bobrowski M, Böhner J, Bürzle B, Chaudhary RP, Gerlitz L, Heyken H, Lange J, Müller M, Scholten T, Schwab N, Wedegärtner R (2015) Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth Syst Dyn 6:245–265

    Article  Google Scholar 

  • Schlütz F (1999) Palynologische Untersuchungen über die holozäne Vegetations-, Klima- und Siedlungsgeschichte in Hochasien (Nanga Parbat, Karakorum, Nianbaoyeze, Lhasa) und das Pleistozän in China (Qinling-Gebirge, Gaxun Nur). Diss Bot 315, Cramer, Berlin

    Google Scholar 

  • Schlütz F, Zech W (2004) Palynological investigations on vegetation and climate change in the Late Quaternary of Lake Rukche area, Gorkha Himal, Central Nepal. Veg Hist Archaeobot 13:81–90

    Article  Google Scholar 

  • Schmidt-Vogt D (1990) High altitude forests in the Jugal Himal (Eastern Central Nepal). Forest Types and Human Impact. Geoecol Res 6, Steiner, Stuttgart

    Google Scholar 

  • Schwab N, Schickhoff U, Bürzle B, Hellmold J, Stellmach M (2015) Dendroecological studies in the Nepal Himalaya – review and outlook in the context of a new research initiative (TREELINE). In: Wilson R, Helle G, Gärtner H (eds) TRACE – tree rings in archaeology, climatology and ecology, vol 13. GFZ, Potsdam, pp 86–95

    Google Scholar 

  • Schwab N, Schickhoff U, Müller M, Gerlitz L, Bürzle B, Böhner J, Chaudhary RP, Scholten T (2016) Treeline responsiveness to climate warming: insights from a krummholz treeline in Rolwaling Himal, Nepal. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, glacier response, and vegetation dynamics in the Himalaya. Springer, Cham, Switzerland

    Google Scholar 

  • Schweinfurth U (1957) Die horizontale und vertikale Verbreitung der Vegetation im Himalaya. Bonner Geogr Abh 20, Dümmlers Verlag, Bonn

    Google Scholar 

  • Schwörer C, Kaltenrieder P, Glur L, Berlinger M, Elbert J, Frei S, Gilli A, Hafner A, Anselmetti FS, Grosjean M, Tinner W (2014) Holocene climate, fire and vegetation dynamics at the treeline in the Northwestern Swiss Alps. Veg Hist Archaeobot 23:479–496

    Article  Google Scholar 

  • Sharma C (1992) Palaeoclimatic oscillations since last deglaciation in western Himalaya: a palynological assay. Palaeobotanist 40:374–382

    Google Scholar 

  • Sharma C, Chauhan MS (1988) Studies in the late Quaternary vegetational history in Himachal Pradesh. 4. Rewalsar Lake II. Pollen Spores 30:395–408

    Google Scholar 

  • Sharma C, Chauhan MS (2001) Late Holocene vegetation and climate of Kupup (Sikkim), Eastern Himalaya, India. J Palaeontol Soc India 46:51–58

    Google Scholar 

  • Sharma C, Gupta A (1995) Vegetational history of Nachiketa Tal, Garhwal Himalaya, India. J Nepal Geol Soc 10:29–34

    Google Scholar 

  • Sharma C, Gupta A (1997) Vegetation and climate in Garhwal Himalaya during early Holocene: Deoria Tal. Palaeobotanist 46:111–116

    Google Scholar 

  • Sharma S, Joachimski M, Sharma M, Tobschall HJ, Singh IB, Sharma C, Chauhan MS, Morgenroth G (2004) Lateglacial and Holocene environmental changes in Ganga plain, Northern India. Quat Sci Rev 23:145–159

    Article  Google Scholar 

  • Shen J, Jones RT, Yang X, Dearing JA, Wang S (2006) The Holocene vegetation history of Lake Erhai, Yunnan province, southwestern China: the role of climate and human forcings. The Holocene 16:265–276

    Article  Google Scholar 

  • Shrestha AB, Aryal R (2011) Climate change in Nepal and its impact on Himalayan glaciers. Reg Environ Chang 11(Suppl 1):S65–S77

    Article  Google Scholar 

  • Shrestha BB, Ghimire B, Lekhak HD, Jha PK (2007) Regeneration of tree line birch (Betula utilis D.Don) forest in trans-Himalayan dry valley in central Nepal. Mt Res Dev 27:259–267

    Article  Google Scholar 

  • Shrestha UB, Gautam S, Bawa KS (2012) Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS One 7:e36741. doi:10.1371/journal.pone.0036741

    Article  Google Scholar 

  • Shrestha KB, Hofgaard A, Vandvik V (2015a) Recent treeline dynamics are similar between dry and mesic areas of Nepal, central Himalaya. J Plant Ecol 8:347–358

    Article  Google Scholar 

  • Shrestha KB, Hofgaard A, Vandvik V (2015b) Tree-growth response to climatic variability in two climatically contrasting treeline ecotone areas, central Himalaya, Nepal. Can J For Res 45:1643–1653

    Article  Google Scholar 

  • Singh G (1963) A preliminary survey of the postglacial vegetational history of Kashmir Valley. Palaeobotanist 12:73–108

    Google Scholar 

  • Singh G, Agrawal DP (1976) Radiocarbon evidence for deglaciation in north-western Himalaya, India. Nature 260:232

    Article  Google Scholar 

  • Singh JS, Singh SP (1992) Forests of Himalaya. Gyanodaya Prakashan, Nainital

    Google Scholar 

  • Singh J, Yadav RR (2000) Tree-ring indications of recent glacier fluctuations in Gangotri, western Himalaya, India. Curr Sci 79:1598–1601

    Google Scholar 

  • Singh CP, Panigrahy S, Thapliyal A, Kimothi MM, Soni P, Parihar JS (2012) Monitoring the alpine treeline shift in parts of the Indian Himalayas using remote sensing. Curr Sci 102:559–562

    Google Scholar 

  • Singh CP, Panigrahy S, Parihar JS, Dharaiya N (2013) Modeling environmental niche of Himalayan birch and remote sensing based vicarious validation. Trop Ecol 54:321–329

    Google Scholar 

  • Smith WK, Germino MJ, Hancock TE, Johnson DM (2003) Another perspective on altitudinal limits of Alpine timberlines. Tree Physiol 23:1101–1112

    Article  Google Scholar 

  • Smith WK, Germino MJ, Johnson DM, Reinhardt K (2009) The altitude of alpine treeline: a bellwether of climate change effects. Bot Rev 75:163–190

    Article  Google Scholar 

  • Song XY, Yao YF, Wortley AH, Paudayal KN, Yang SH, Li CS, Blackmore S (2012) Holocene vegetation and climate history at Haligu on the Jade Dragon snow mountain, Yunnan, SW China. Clim Change 113:841–866

    Article  Google Scholar 

  • Stainton JDA (1972) Forests of Nepal. Hafner, New York

    Google Scholar 

  • Staubwasser M (2006) An overview of Holocene South Asian monsoon records- monsoon domains and regional contrasts. J Geol Soc India 68:433–446

    Google Scholar 

  • Staubwasser M, Sirocko F, Grootes PM, Segl M (2003) Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophys Res Lett 30(8):1425. doi:10.1029/2002GL016822

    Article  Google Scholar 

  • Sujakhu H, Gosai KR, Karmacharya SB (2014) Forest structure and regeneration pattern of Betula utilis D. Don in Manaslu conservation area, Nepal. Ecoprint 20:107–113

    Article  Google Scholar 

  • Sun X, Wu Y, Qiao Y, Walker D (1986) Late Pleistocene and Holocene vegetation history at Kunming, Yunnan Province, Southwest China. J Biogeogr 13:441–476

    Article  Google Scholar 

  • Telwala Y, Brook BW, Manish K, Pandit MK (2013) Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS One 8:e57103. doi:10.1371/journal.pone.0057103

    Article  Google Scholar 

  • Tinner W, Theurillat JP (2003) Uppermost limit, extent, and fluctuations of the timberline and treeline ecocline in the Swiss Central Alps during the past 11,500 years. Arct Antarct Alp Res 35:158–169

    Article  Google Scholar 

  • Trivedi A, Chauhan MS (2008) Pollen proxy records of Holocene vegetation and climate change from Mansar Lake, Jammu region, India. Curr Sci 95:1347–1354

    Google Scholar 

  • Troll C (1972) The three-dimensional zonation of the Himalayan system. In: Troll C (ed) Geoecology of the high-mountain regions of Eurasia. Steiner, Wiesbaden, pp 264–275

    Google Scholar 

  • Vishnu-Mittre (1984) Quaternary palaeobotany and palynology in the Himalaya: an overview. Palaeobotanist 32:158–187

    Google Scholar 

  • Vittoz P, Rulence B, Largey T, Freléchoux F (2008) Effects of climate and land-use change on the establishment and growth of Cembran Pine (Pinus cembra L.) over the altitudinal treeline ecotone in the central Swiss Alps. Arct Antarct Alp Res 40:225–232

    Article  Google Scholar 

  • Walker D (1986) Late Pleistocene-early Holocene vegetational and climatic changes in Yunnan Province, southwest China. J Biogeogr 13:477–486

    Article  Google Scholar 

  • Wallentin G, Tappeiner U, Strobl J, Tasser E (2008) Understanding alpine tree line dynamics: an individual-based model. Ecol Model 218:235–246

    Article  Google Scholar 

  • Wang Y, Camarero JJ, Luo T, Liang E (2012) Spatial patterns of Smith fir alpine treelines on the south-eastern Tibetan Plateau support that contingent local conditions drive recent treeline patterns. Plant Ecol Div 5:311–321

    Article  Google Scholar 

  • Weiss DJ, Malanson GP, Walsh SJ (2015) Multiscale relationships between alpine treeline elevation and hypothesized environmental controls in the western United States. Ann Assoc Am Geogr 105:437–453

    Article  Google Scholar 

  • Wieser G, Tausz M (eds) (2007) Trees at their upper limit. Treelife limitation at the Alpine timberline. Springer, Dordrecht, pp 79–129

    Google Scholar 

  • Wieser G, Holtmeier FK, Smith WK (2014) Treelines in a changing globalenvironment. In: Tausz M, Grulke N (eds) Trees in a changing environment. Springer, Dordrecht, pp 221–263

    Google Scholar 

  • Wong MH, Duan C, Long Y, Luo Y, Xie G (2010) How will the distribution and size of subalpine Abies georgei forest respond to climate change? A study in Northwest Yunnan, China. Phys Geogr 31:319–335

    Article  Google Scholar 

  • Xiao X, Haberle SG, Shen J, Yang X, Han Y, Zhang E, Wang S (2014) Latest Pleistocene and Holocene vegetation and climate history inferred from an alpine lacustrine record, northwestern Yunnan Province, southwestern China. Quat Sci Rev 86:35–48

    Article  Google Scholar 

  • Xu J, Grumbine RE, Shrestha A, Eriksson M, Yang X, Wang Y, Wilkes A (2009) The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv Biol 23:520–530

    Article  Google Scholar 

  • Yadav RR, Singh J (2002) Tree-ring analysis of Taxus baccata from the western Himalaya, India, and its dendroclimatic potential. Tree-Ring Res 58:23–29

    Google Scholar 

  • Yadav RR, Singh J, Dubey B, Chaturvedi R (2004) Varying strength of relationship between temperature and growth of high level fir at marginal ecosystems in western Himalaya, India. Curr Sci 86:1152–1156

    Google Scholar 

  • Yadav RR, Singh J, Dubey B, Misra KG (2006) A 1584-year ring width chronology of juniper from Lahul, Himachal Pradesh: prospects of developing millennia-long climate records. Curr Sci 90:1122–1126

    Google Scholar 

  • Yadav RR, Bräuning A, Singh J (2011) Tree ring inferred summer temperature variations over the last millennium in western Himalaya, India. Clim Dyn 36:1545–1554

    Article  Google Scholar 

  • Yang B, Wang J, Bräuning A, Dong Z, Esper J (2009) Late Holocene climatic and environmental changes in arid central Asia. Quat Int 194:68–78

    Article  Google Scholar 

  • Yang B, Kang X, Bräuning A, Liu J, Qin C, Liu J (2010) A 622-year regional temperature history of southeast Tibet derived from tree rings. The Holocene 20:181–190

    Article  Google Scholar 

  • Yang J, Zhang W, Cui Z, Yi C, Chen Y, Xu X (2010) Climate change since 11.5 ka on the Diancang Massif on the southeastern margin of the Tibetan Plateau. Quat Res 73:304–312

    Article  Google Scholar 

  • Yasuda Y, Tabata H (1988) Vegetation and climatic changes in Nepal Himalayas II. A preliminary study of the Holocene vegetational history in the Lake Rara National Park area, West Nepal. Proc Indian Natl Sci Acad 54A:538–549

    Google Scholar 

  • Yonebayashi C, Minaki M (1997) Late quaternary vegetation and climatic history of eastern Nepal. J Biogeogr 24:837–843

    Article  Google Scholar 

  • Yu G, Chen X, Ni J, Cheddadi R, Guiot J, Han H, Harrison SP, Huang C, Ke M, Kong Z, Li S, Li W, Liew P, Liu G, Liu J, Liu Q, Liu KB, Prentice IC, Qui W, Ren G, Song C, Sugita S, Sun X, Tang L, Van Campo E, Xia Y, Xu Q, Yan S, Yang X, Zhao J, Zheng Z (2000) Palaeovegetation of China: a pollen data-based synthesis for the mid-Holocene and last glacial maximum. J Biogeogr 27:635–664

    Article  Google Scholar 

  • Zhang L, Luo T, Liu X, Kong G (2010) Altitudinal variations in seedling and sapling density and age structure of timberline tree species in the Sergyemla Mountains, southeast Tibet. Acta Ecol Sin 30:76–80

    Article  Google Scholar 

  • Zhu HF, Shao XM, Yin ZY, Xu P, Xu Y, Tian H (2011) August temperature variability in the southeastern Tibetan Plateau since AD 1385 inferred from tree rings. Palaeogeogr Palaeoclimatol Palaeoecol 305:84–92

    Article  Google Scholar 

  • Zurbriggen N, Hättenschwiler S, Frei ES, Hagedorn F, Bebi P (2013) Performance of germinating tree seedlings below and above treeline in the Swiss Alps. Plant Ecol 214:385–396

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank several local people in Beding and Langtang who provided lodging and support in field data collection. Our thanks also go to the Deutsche Forschungsgemeinschaft (DFG SCHI 436/14-1, SCHO 739/14-1, BO 1333/4-1), the DAAD, the University of Hamburg and several foundations for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Schickhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schickhoff, U. et al. (2016). Climate Change and Treeline Dynamics in the Himalaya. In: Singh, R., Schickhoff, U., Mal, S. (eds) Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya. Springer, Cham. https://doi.org/10.1007/978-3-319-28977-9_15

Download citation

Publish with us

Policies and ethics