Skip to main content

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

Abstract

Various organic pollutants are discharged into the aquatic environment. Most of them are not only toxic but also nonbiodegradable. Hence they cannot be treated by biological wastewater treatment plants or other conventional methods. And consequently a need arises to develop effective methods for the degradation of organic pollutants, either to less harmful compounds or to their complete mineralization. Advanced Oxidation Processes (AOPs) have attracted increasing attention due to their potential capability in the removal of recalcitrant organic pollutants. This chapter presents the general process principles on Advanced Oxidation Processes namely and discusses catalysis in Advanced Oxidation Processes. The usage and mechanism of both homogeneous and heterogeneous catalysts in Fenton Oxidation, Catalytic Wet Air Oxidation and Ozonation are discussed comprehensively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atalay S, Ersöz G (2015) Green chemistry for dyes removal from waste water: research trends and applications. In: Sharma SK (ed) Processes for removal of dyes from aqeous media. Scrivener Publishing LLC, Beverly, pp 83–117

    Google Scholar 

  • Barb WG, Baxendale JH, George P, Hargrave KR (1949) Nature 163:692–694

    Article  CAS  Google Scholar 

  • Barb WG, Baxendale JH, George P, Hargrave KR (1951a) Trans Faraday Soc 47:462–500

    Article  CAS  Google Scholar 

  • Barb WG, Baxendale JH, George P, Hargrave KR (1951b) Trans Faraday Soc 47:591–616

    Article  CAS  Google Scholar 

  • Beltran FJ, Rivas FJ, Montero-de-Espinosa R (2005) Iron type catalysts for the ozonation of oxalic acid in water. Water Res 39:3553–3564

    Article  CAS  Google Scholar 

  • Bi DY (1999) Ind Catal 5:24–30

    Google Scholar 

  • Fu D, Zhang F, Wang L, Yang F, Liang X (2015) Simultaneous removal of nitrobenzene and phenol by homogenous catalytic wet air oxidation. Chin J Catal 36(7):952–956

    Article  CAS  Google Scholar 

  • Gracia R, Aragües JL, Cortés S, Ovelleiro JL (1995) In: Proceedings of the 12th world congress of the international ozone association, vol 75. Lille

    Google Scholar 

  • Jing G, Luan M, Chen T (2012) Progress of catalytic wet air oxidation technology. Arab J Chem (in press)

    Google Scholar 

  • Karat I (2013) Advanced oxidation processes for removal of COD from pulp and paper mill effluents. A Technical, Economical and Environmental Evaluation. Industrial Ecology, Master of Science Thesis, Royal Institute of Technology

    Google Scholar 

  • Kasprzyk-Hordern B, Ziólek M, Nawrocki J (2003) Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl Catal B Environ 46:639–669

    Article  CAS  Google Scholar 

  • Kim KH, Ihm SK (2011) Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review. J Hazard Mater 186(1):16–34

    Article  CAS  Google Scholar 

  • Levec J (1997) Wet oxidation processes for treating industrial wastewaters. Chem Biochem Eng 11:47–58

    CAS  Google Scholar 

  • Levec J, Pintar A (2007) Catalytic wet-air oxidation processes: a review. Catal Today 124:172–184

    Article  CAS  Google Scholar 

  • Lin SH, Ho SJ (1996) Appl Catal B Environ 9:133–147

    Article  CAS  Google Scholar 

  • Liotta LF, Gruttadauria M, DiCarlo G, Perrini G, Librando V (2009) Heterogeneous catalytic degradation of phenolic substrates: catalysts activity. J Hazard Mater 162:88–606

    Article  Google Scholar 

  • Liu J, Zhou L (1998) Water Purif Technol 65:6–10

    Google Scholar 

  • Loures CCA, Alcântara MAK, Filho IHJ, Teixeira ACSC, Silva FT, Paiva TCB, Samanamud GRL (2013) Advanced oxidative degradation processes: fundamentals and applications. Int Rev Chem Eng 5(2):102–120

    Google Scholar 

  • Luck F (1999) Wet air oxidation: past, present and future. Catal Today 53:8l–9l

    Article  Google Scholar 

  • Mandal A, Ojha K, Bhattacharjee S, De AK (2004) Removal of catechol from aqueous solution by advanced photo-oxidation process. Chem Eng J 102(2):203–208

    Article  CAS  Google Scholar 

  • Mota ALN, Albuquerque LF, Beltrame LTC, Chiavone-Filho O, Machulek A Jr, Nascimento CAO (2008) Advanced oxidation processes and their application in the petroleum industry: a review. Braz J Pet Gas 2(3):122–142

    Google Scholar 

  • Munter R (2001) Advanced oxidation processes—current status and prospects. Proc Estonian Acad Sci Chem 50:59

    CAS  Google Scholar 

  • Muruganandham M, Suri RPS, Jafari S, Sillanpää M, Lee GJ, Wu JJ, Swaminathan M (2014) Recent developments in homogeneous advanced oxidation processes for water and wastewater treatment 21

    Google Scholar 

  • Navalon S, Alvaro M, Garcia H (2010) Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Appl Catal B 99:1–26

    Article  CAS  Google Scholar 

  • Nawrocki J, Kasprzyk-Hordern B (2010) The efficiency and mechanisms of catalytic ozonation. Appl Catal B Environ 99:27–42

    Article  CAS  Google Scholar 

  • Neyens E, Baeyens J (2003) A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater 98:33–50

    Article  CAS  Google Scholar 

  • Pachhade K, Sandhya S, Swaminathan K (2009) Ozonation of reactive dye, Procion red MX-5B catalyzed by metal ions. J Hazard Mater 167:313–318

    Article  CAS  Google Scholar 

  • Pines DS, Reckhow DA (2002) Effect of dissolved cobalt(II) on the ozonation of oxalic acid. Environ Sci Technol 36:4046–4051

    Article  CAS  Google Scholar 

  • Pouran SR, Raman AAA, Dau WMAW (2014) Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. J Cleaner Prod 64:24–35

    Article  Google Scholar 

  • Rubin MB (2008) The history of ozone VI, Ozone of Silca Gel (“dry ozone”). Bull Hist Chem 33:68–75

    CAS  Google Scholar 

  • Sable SS (2014) Development of novel catalytic materials for removal of emerging organic pollutants by advanced oxidation processes. Universitat Rovira I Virgili, Doctorate Thesis

    Google Scholar 

  • Shahidi D, Roy R, Azzouz A (2015) Advances in catalytic oxidation of organic pollutants-prospects for thorough mineralization by natural clay catalysts. Appl Catal B Environ 174–175:277–292

    Article  Google Scholar 

  • Sharma S, Ruparelia JP, Patel ML (2011) A general review on advanced oxidation processes for waste water treatment. Institute of Technology, Nirma University, Ahmedabad, pp 382–481, 08–10 Dec 2011

    Google Scholar 

  • Shiraga M, Kawabata T, Li D, Shishido T, Komaguchi K, Sano T, Takehira K (2006) Appl Clay Sci 33:247–259

    Article  CAS  Google Scholar 

  • Siitonen J (2007) Paperitehtaan Poistoveden Otsonointi. Bachelor Thesis, Lappeenrannan Technical University

    Google Scholar 

  • Soon AN, Hameed BH (2011) Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton, and photo-assisted Fenton process. Desalination 269:1–16

    Article  CAS  Google Scholar 

  • Trapido M, Veressinina Y, Munter R, Kallas J (2005) Catalytic ozonation of m-dinitrobenzene. Ozone Sci Eng 27:359–363

    Article  CAS  Google Scholar 

  • Wang YZ, Li Z, Yin L, Hu KY (1993) Environ Chem 12:408–413

    CAS  Google Scholar 

  • Wu CH, Kuo CY, Chang CL (2008) Homogeneous catalytic ozonation of C.I. Reactive Red 2 by metallic ions in a bubble column reactor. J Hazard Mater 154:748–755

    Article  CAS  Google Scholar 

  • Xiao H, Liu R, Zhao X, Qu J (2008) Effect of manganese ion on the mineralization of 2,4-dichlorophenol by ozone. Chemosphere 72:1006–1012

    Article  CAS  Google Scholar 

  • Yalfani MS (2011) New catalytic advanced oxidation processes for wastewater treatment. Doctoral Thesis, Universitat Rovira i Virgili

    Google Scholar 

  • Zhao L, Ma J, Sunb Z, Zhai X (2008) Catalytic ozonation for the degradation of nitrobenzene in aqueous solution by ceramic honeycomb-supported manganese. Appl Catal B Environ 83:256–264

    Article  CAS  Google Scholar 

  • Zhao L, Ma J, Sunb Z, Zhai X (2009) Mechanism of heterogeneous catalytic ozonation of nitrobenzene in aqueous solution with modified ceramic honeycomb. Appl Catal B Environ 89:326–334

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülin Ersöz .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Atalay, S., Ersöz, G. (2016). Advanced Oxidation Processes. In: Novel Catalysts in Advanced Oxidation of Organic Pollutants. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-28950-2_3

Download citation

Publish with us

Policies and ethics